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ABSTRACT 

Sequential decoding procedures are studied in the context of 

selecting a high-value path through a metric tree. 

are considered and their properties compared. For the conventional 

Fano algorithm, it is noted that the difficulty in decoding depends 

on the minimum node value along the correct path. This minimum is 

a random variable and it can be modeled in terms of Markov chains. 

Some properties of such Markov chains are studied. 

Several algorithms 

A stack algorithm introduced by Zigangirov and independently by 

Jelinek is presented, and it is shown that this algorithm is essen- 

tially equivalent to the Fano algorithm with regard to the set of 

nodes examined and the path selected, although the description and 

action of the two algorithms are quite different. 

A modified Fano algorithm is introduced, in which the quantizing 

parameter A is eliminated and decisions are based on exact node 

values rather than on quantized values. 

computationally inferior to the old (in cases studied so far), it is 

of  some theoretical interest since the conventional (quantized) Fano 

algorithm may be Considered to be a quantized version of it. 

While the new algorithm is 

Extensive computer simulations comparing the Fano algorithm with 

a quantized Zigangirov-Jelinek algorithm are reported. 

of these comparisons is that at rates near Rcomp the stack algorithm 

offers an advantage over the Fano algorithm in decoder speed, h u t  it 

requires large storage to be available for use by the decoder. 

The conclusion 

Finally, the possibility of using sequential tree search algorithms 

for searching more general graphs is investigated. 
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CHAPTER I 

INTRODUCTION 

Communication systems employing convolutional encoding at the 

input and sequential decoding at the output of certain noisy channels 

are among the most attractive means of approaching the reliability of 

communication promised by the coding theorem. In this chapter 

convolutional codes are discussed briefly, and then sequential 

decoding is described informally. 

tial decoding are presented and heuristically treated. 

Some well-known results on sequen- 

1. A .  CONVOLUTIONAL CODES 

A general single-input rate % convolutional encoder i s  displayed 

in Figure 1. A single information sequence of symbols from some finite 

field GF(q) is fed into the encoder from the left and two output 

sequences are transmitted. We may think of  the output sequences as 

being commutated to form a single transmitted sequence, o r  as being 

transmitted over two identical channels. The polynomials 

1 
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-- Unit delay element 

- -  Constant multiplier 

@ -- Mod-qL adder 

FIGURE 1. A Single-input Rate $ Convolutional Encoder. 

FIGURE 2. A Binary Rate & Systematic Encoder of Memory 2. 
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are c a l l e d  code-.generating polynomials and m i s  c a l l e d  t h e  memory of  

t h e  encoder. For well-.chosen G and G t he  received sequence, when 

not t oo  severe ly  corrupted by channel no ise ,  can be processed after 

recept ion and the  o r i g i n a l  information sequence recovered. 

1 2 

The dependence of t ransmit ted symbols upon a span of  p a s t  in for -  

mation symbols gives r ise  t o  a na tu ra l  representa t ion  of t h e  output of  

a convolutional encoder i n  t h e  form of  a t r ee .  This t r ee  i s  rooted at 

an o r i g i n  node which has no predecessor,  while every o ther  node has 

exac t ly  one predecessor.  Every node has exac t ly  two successors ( for  

s ingle- input  encoders),  and there  i s  a one-to-one correspondence 

between the  s e t  o f  paths  through t h e  t ree  and the  s e t  of poss ib le  

information sequences. As an example, consider t h e  encoder of Figure 

2 ,  a ra te  4 binary encoder of memory 2 with G1(D) = 1 and 

G 2 ( D )  = 1 + D + D 2 . The e f f e c t  of choosing G1(D) = 1 i s  t h a t  the  

information sequence appears e x p l i c i t l y  i n  t h e  encoder output .  

having t h i s  property a r e  ca l l ed  systematic .  

shows t h e  s e t  of  a l l  poss ib le  encoder outputs ,  i . e . ,  t h e  code. A t  each 

node i n  t h e  t ree  t h e  symbols along t h e  upward and downward emanating 

branch correspond t o  the  output when a zero and one, respec t ive ly ,  i s  

in se r t ed  i n t o  the  encoder, given t h a t  the  pas t  information b i t s  fed  

i n t o  t h e  encoder were t h e  b i t s  designated by t h e  path t o  t h a t  node. 

For example, t h e  information sequence 0 1 0 1 - - - - causes an 

encoded sequence 00 11 01 10 * - , a s  shown by the  bold path i n  

Figure 3 .  

Codes 

The t ree  of  Figure 3 

I t  i s  p rec i se ly  t h i s  t r e e  s t ruc tu re  of convolutional codes which 

makes them well-sui ted t o  sequent ia l  decoding, as we s h a l l  see  l a t e r .  

Another graphical  model of convolutional codes i s  suggested by 



FIGURE 3. Code Tree for the Encoder of Figure 2. 

4 

FIGURE 4. Code Trellis for the Encoder of Figure 2. 



5 

t h e  fact t h a t  t he  dependence of  t h e  encoder outputs upon p a s t  i n fo r -  

mation symbols extends only over a f i n i t e  span of pas t  inputs .  

two information sequences i i , iu and i;, ii, . . a ,  i r  d i f f e r  0’ 1’ . U 

only i n  t h e  first u-m+l p laces ,  t h e  port ion of  t he  code t r e e  extending 

out from t h e  node a t  the  end of  t h e  path spec i f ied  by the f irst  

I f  

sequence is  i d e n t i c a l  t o  t h a t  extending out from the  node a t  the  end 

of t he  path spec i f i ed  by the second. 

t inguish  between these  two nodes, and the  code tree can be collapsed 

Thus the re  i s  no need t o  d i s -  

t o  a t re l l i s  by ident i fy ing  such nodes. More formally, w e  may con- 

s i d e r  t h e  nodes i n  t h e  t re l l i s  t o  be equivalence c l a s ses  of nodes i n  

the  tree under t h e  r e l a t i o n :  

t h e  encoder s t a t e  i s  the same a t  S1 
and S 2 ;  and 

S 
s 3 s  <==-P 

and S2 a r e  a t  the  same depth i n  1 2  
t i! e t r e e .  

The r e s u l t  of  col lapsing the  t r e e  of Figure 3 by ident i fy ing  nodes a t  

the ends of paths  which agree i n  the  last  m=2 places  i s  the  t r e l l i s  of  

Figure 4. Again the  output sequence i s  the  sequence of symbols along 

the  path determined by . the  information sequence, but i n  the  t r e l l i s ,  

paths which i n i t i a l l y  d i f f e r  w i l l  remerge i f  t h e  corresponding in fo r -  

mation sequences agree i n  m consecutive p laces .  

convolutional codes was suggested by Forney[l] .  

The t r e l l i s  model f o r  

As  we remarked before ,  t he  t r e e  model i s  the  more na tu ra l  model 

f o r  convolutional codes when we a r e  studying t h e  ac t ion  o f  a sequent ia l  

decoder. The t r e l l i s  model i s  convenient when studying probabi l i ty  of  

e r r o r ,  however, and i n  addi t ion we s h a l l  see  i n  Chapter I V  t h a t  one 

can meaningfully discuss  the  ac t ion  o f  a sequent ia l  decoder operat ing 

on such a t r e l l i s .  
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1. B. SEQUENTIAL DECODING 

In decoding a received sequence, one des i r e s  t o  s e l e c t  from among 

t h e  t ransmit ted sequences which make up the  code, t he  one which most 

l i k e l y  would have been transformed by channel noise  i n t o  t h e  given 

received sequence. O f  course,  one could j u s t  as well produce t h i s  

sequence by el iminat ing unl ike ly  sequences u n t i l  only a s ing le  

sequence remains, i f  t h i s  t u rns  out  t o  be more convenient. 

Wozencraft [21 noted t h a t  i n  applying t h i s  r e j ec t ion  technique t o  codes 

having t h e  tree s t r u c t u r e  discussed before ,  t he  number of sequences 

r e j ec t ed  i s  a f r a c t i o n  of the  t o t a l  number of codewords which, roughly 

speaking, grows exponent ia l ly  with the  t t ea r l ines s t f  of r e j e c t i o n .  

More exac t ly ,  r e j e c t i o n  of  a path on the  b a s i s  of  t he  fact t h a t  the  

t ransmit ted sequence along i t s  f i rs t  k branches is  unl ikely t o  have 

been corrupted by noise  i n t o  the corresponding segment of t he  received 

sequence i s  tantamount t o  r e j e c t i n g  every path beginning with these 

k branches, namely l/uk 

number of branches emanating from each node. 

of the  paths  i n  the t r e e ,  where u i s  the  

Wozencraft termed h i s  

procedure f o r  explo i t ing  t h i s  property "sequential  decoding. I t  

Jacobs and B e r l e k a m ~ [ ~ I  have given two conditions which a 

decoding algorithm must s a t i s f y  i n  order  t o  qua l i fy  as a sequent ia l  

decoding algorithm: 

J B 1 :  The decoder performs a t  l e a s t  one computation 
f o r  each node it examines. 

J B 2 :  Decisions the  decoder makes about searching new 
p a r t s  of the  t r e e  a r e  made only on the  bas i s  of 
information about nodes already examined, and not 
about nodes i n  the  unexplored p a r t  of  t he  t r e e .  

The sequent ia l  decoding procedures w e  w i l l  be concerned with could be 
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termed "metric-based"; t h a t  is ,  search decis ions are based on values,  

ca l l ed  metrics, which are assigned t o  every branch i n  the  code tree.  

These values  are, f o r  memoryless channels, genera l ly  taken t o  be: 

where x 

symbol i n  t h e  received sequence, f ( . )  i s  the  nominal received symbol 

p robab i l i t y  function, N i s  t h e  number of code symbols pe r  branch, and 

B is  a b i a s  term. The b i a s  i s  chosen i n  such a way t h a t ,  on the  

average, values  of branches along t h e  co r rec t  path are pos i t i ve ,  while 

values of o the r  branches are negat ive.  

equal t o  t h e  sum of  the  branch values along t h e  path leading t o  t h e  

node. With our  choice of  b i a s ,  it i s  c lear  t h a t  on t h e  average, node 

values along the  cor rec t  path w i l l  increase with depth i n t o  the  t r ee ,  

while node values along incor rec t  paths  w i l l  decrease.  The decoder 

s t r a t egy  is  then t o  look f o r  a path of increasing value.  

is t h e  j t h  code symbol on the  branch, r j  is  t h e  corresponding j 

Nodes are assigned values 

The d i f f i c u l t y  t h e  decoder encounters i n  searching f o r  such a 

path depends on the  various branch values ,  which are i n  t u r n  determined 

by t h e  channel noise .  

decoder performs while examining nodes such t h a t  t he  f irst  branch of  

t h e  path leading t o  t h e  node i s  not t h e  f irst  branch of  t h e  cor rec t  

path.  

tance i n  determining the  p r a c t i c a b i l i t y  of sequent ia l  decoding. In 

p a r t i c u l a r ,  we would l i k e  t o  know how rapid ly  t h e  quant i ty  Pr{CO>N) 

decreases as N increases .  Ke might hope, f o r  example, t h a t  t h i s  

quant i ty  decreases exponent ia l ly  wi th  N .  The following discussion 

shows t h a t  t h i s  i s  not t he  case. 

Define Co t o  be the  number of  computations the  

Then Co i s  a random va r i ab le ,  and i t s  s ta t is t ics  a re  of impor- 
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Consider using a rate % code on a binary symmetric channel 

with crossover probability p (see Figure 5). Assume that the code is 

complementary; that is, at every node the symbols on the zero branch 

emanating from that node are complements of the symbols on the one 

branch. From (l), the branch metrics have the form: 

2 log[Z(l-p)] - ZB, if both symbols agree 1 
log[Z(l-p)] + log[2p] - ZB, if one agrees and 

one disagrees 

2 log[2p] - 2B, if both disagree 

Denote these three values z z and z respectively, and note that 
0’ 1’ 2 

z < z < z (assuming 0 < p < %). By the group property of con- 

volutional codes, k of the branches at any depth in the tree have 
2 1 0  

branch metric ZO, 4 have branch metric z1, and %i have branch metric 

22. Hence the requirement that the branch metric be negative on the 

average for branches not on the correct path reduces to: 

+zo + $zl + $z2 = z1 < 0 

Moreover we must have zo < 0 if the average metric on the correct 

path is to be positive. 

complementary, at each node the two exiting branch metrics are either 

zo and z2 o r  z1 and zl. 

Hence z 2  < z1 < 0 < zo. Since the code is 

-, 

Suppose that channel noise causes the node values along the 

correct path to decrease with depth initially before becoming positive 

and increasing through the rest o‘f the tree. 

value along the correct path be -Q, where Q > 0. It can be shown that 

the probability of this event, for large Q, varies as e-rQ, where r is 

a positive constant. 

Let the minimum node 

Call that part of the tree composed of paths 
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beginning with the first  incor rec t  branch, t h e  incor rec t  ha l f - t ree .  

Now by .JB2, t he  decoder r u s t  examiiie cvery path i n  the  incor rec t  

h a l f - t r e e  a t  least as far as the  first node whose value is  less than 

-.Q, because i t  cannot determine before t h a t  po in t  which of t h e  paths  

is increasing.  Therefore t h e  number of nodes examined i n  the  

incor rec t  h a l f - t r e e  i s  a t  least as grea t  as the  number of  such nodes 

which a r e  connected t o  the  o r ig in  by paths  along which each node has 

value g rea t e r  than -.Q. We now claim 

t h a t  t h e  metr ic  t r e e  configuration which minimizes M(Q),  f o r  any Q, i s  

Let us denote t h i s  number M(Q). 

t h a t  i n  which the  first incor rec t  branch has value 22 and every o ther  

branch i n  t h e  incor rec t  ha l f - t r ee  has value z 1 ;  t h a t  i s ,  t h e  t r e e  

shown i n  Figure 6* .  To see  t h a t  t h i s  i s  so ,  note  t h a t  any o the r  metric 

t r e e  configurat ion d i f f e r s  from t h i s  one i n  one o r  both of these  ways: 

(1) the  f irst  incor rec t  branch has value d i f f e r e n t  from 22; (2) a t  some 

nodes i n  the  incor rec t  h a l f - t r e e ,  t he  ex i t i ng  branch metrics a r e  zo 

and 22 ins tead  of z 1  and zl. Sta r t ing  with the  tree of Figure 6,  it , 

i s  poss ib le  t o  make successive changes, each of which does not  decrease 

M ( Q ) ,  and which transform t h e  o r ig ina l  t r e e  i n t o  any t r e e  we please,  

as deep i n t o  the  t ree  as necessary.  For  example, Figure 7 shows how 

t h e  t r e e  of Figure 6 can be transformed i n t o  that  of  Figure 7 f .  In 

going from a t o  b ,  t h e  value of every node i n  the  incor rec t  h a l f - t r e e  

i s  increased by z 1  - 22; hence % (0,) Z M a ( Q )  . To go from b t o  c ,  con- 

s i d e r  i n t e r rup t ing  the  t r e e  a t  node A, s h i f t i n g  the  p a r t  of the  t r e e  

rooted the re  one s t e p  t o  the  r i g h t ,  and i n s e r t i n g  a new branch of 

value ZO. 

higher values than t h e i r  counterpar ts  i n  t r e e  b ,  s o  Xc(Q) 2 Mb(Q). 

The nodes i n  the  region enclosed by the  dashed l i n e  have 

* ' A somewhat s imilar  argument was used by Savagefql , who noted 
t h a t  a t r e e  i n  which every branch i n  the  incor rec t  h a l f - t r e e  has 
value 22 overbounds M(Q) . 
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0 1 

0 1 
1 -.p 

FIGURE 5 .  The Binary Symmetric Channel. 

FIGURE 6. The Optimum Configuration of the Incorrect 
Half -tree. 
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FIGURE 7. Steps in Showing That the Configuration of Figure 6 is 
Optimum, 
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Now adding another branch at node A and rooting a tree of branches of 

value z1 does not affect the other nodes, so &(Q) 5 Mc(Q], The same 

process leads through steps e and f, so finally, M f ( Q )  2 Ma(Q) 

clear that this process can be extended as far into the tree as 

necessary. 

It is 

We are now prepared to lower-bound P r ( C 0  2 N3 for the case under 

It is clear that for the tree of Figure 6, consideration. 

where 1x1 indicates the integer part of x, 

Thus for large Q (and hence large N), 

Now by JB1, Co 2 M ( Q ) .  

P r ( C 0  2 k2TQ/z1) 5 Pr(minimum along correct path = -Q} 

p: e-rQ 

Putting N = k2-41'1 yields Q = K(ln N - In k), and hence 

This shows that the combined effects of  exponential growth of  the 

number of nodes and exponential decay of having to examine them results 

in a distribution of computation which decreases at most algebraically. 

A distribution of this form is called Pareto. 

In a more rigorous and less restricted derivation than this one, 

Jacobs and Berlekamp13] have shown that for any decoding algorithm 

satisfying JB1 and JB2, the distribution of computation (conditioned 

on correct decoding) is essentially Pareto. To state their result 

precisely, consider operating on a discrete memoryless channel with 

K inputs and J outputs, transition probabilities P(j Ik), and input 
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distribution 9 = CQ(k], k=ls2;.*,K). Define 

Jacobs and Berlekamp show that the computation required to decode the 

first A branches, C(A), has a distribution satisfying 

and 0- is a quantity varying RP where p is the solution of R = 

with m. 
totically unimportant. 

The number A depends on N, but the dependence is asymp- 

A summary of Jacobs and Berlekamp’s argument, with a minor 

modification allowing the deduction of a lower bound on Pr(C0 2 NI 

of the form 

where F(N) is a slowly-varying function of N, is given in Appendix A. 

Our derivation of a lower bound to the distribution o f  computation, 

as well as Jacobs and Berlekamp’s, assume that the tree being searched 

is infinite in extent. In many practical applications, and in most of 

the sequel, it is assumed that the tree is finite, consisting of L 

levels. 

distribution of computation. 

We now investigate the effect of  this truncation on the 

First we modify slightly and generalize the definition of Co and 

take C. to be the number of computations the decoder performs at the J 
jth node of the correct path and at nodes such that the first j branches 
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of t h e  path leading t o  the  node are the first j branches of t he  cor rec t  

path,  but  t h e  ('j*l]st i s  not .  

incorrect  pa r t  of t h e  tree stemming from the  j t h  node on t h e  correct 

path, as well as the  computations a t  the  j t h  node on the  cor rec t  path,  

are counted i n  C 

computations sf t he  kind counted i n  Cj which are performed before the  

decoder makes i t s  first move t o  any node a t  depth L.  

C . ( L )  S C .  f o r  a l l  j and L. 

Thus a l l  computations performed i n  the  

Now f o r  any L > 0,  l e t  C . (L)  be the  number of 
j '  3 

It i s  clear t h a t  

In pa r t i cu la r ,  Co(L) I Co, and s o  
J J 

f o r  any L and N.  

Since the  decoder can make only f i n i t e l y  many computations before 

moving t o  depth L, t he re  is some N* such t h a t  Pr(Co(L) 1 N*) = 0. On 

the  other  hand, fo r  fixed Co, t he  sequence of random variables  Co(L), 

L = 1, 2 ,  * * ' .  converges i n  probabi l i ty  t o  Co.  The r e s u l t  i s  t h a t  

there  e x i s t s  an intermediate range of N f o r  which 

so t h a t  the  lower bound (4) appl ies  t o  the  truncated computation Co(L) 

i n  t h i s  range, while f o r  grea te r  values o f  N, Pr{CO(L) 2 N 1  = 0. 

(This is  discussed more prec ise ly  i n  Appendix A.) 

Now f o r  a t r e e  of  L l eve ls ,  t h e  t o t a l  number of computations 

performed i n  decoding is  

A measure of d i f f i c u l t y  i n  decoding t h a t  i s  easy t o  compute experimen- 

t a l l y  is  the  average number of computations per  decoded branch, 
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We now relate PrIC 

then CAVCL) h N .  

f o r  which (6) holds,  then 

(L) 2 NI t o  our known r e s u l t s .  If C,(L) 2 NL, 
AV 

Hence i f  N i s  such t h a t  NL fa l ls  within t h e  range 

sa t h a t  

by v i r t u e  of  (4) and (8). 

We can a l s o  upper-bound the  d i s t r i b u t i o n  of CAV(L) by not ing t h a t  

i f  CAv(L) 2 N, then f o r  some j, C j  (L) 2 N .  Hence by t h e  union bound, 

L- 1 

j =O 
p r { c A V ( ~ )  2 N} 6 1 P r { C j ( ~ )  2 N )  (10) 

Now s ince  the  e f f e c t  of t runca t ion  i s  enhanced as we move deeper in to  

the  tree,  we have 

Hence, using (11) i n  ( l o ) ,  and using (5) i n  t h e  r e s u l t ,  

To r ecap i tu l a t e ,  we have shown t h a t  t he  d i s t r i b u t i o n  of t he  

average computation pe r  decoded branch i n  a f i n i t e  t r e e  i s  upper- 

bounded i n  accordance with ( 1 2 ) .  

on L,  t h e  exis tence and l i m i t s  of which a r e  discussed i n  Appendix A, 

t he  d i s t r i b u t i o n  s a t i s f i e s  the  Pareto lower bound o f  (9), which has 

Further ,  f o r  N i n  a range dependent 
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t he  same Pareto exponent as t h e  d i s t r i b u t i o n  of Co. 

for  an intermedfate range of N, C,v(L) i s  P a r e t o d i s t r i b u t e d  with t h e  

same exponent as Co. 

I t  follows t h a t  



CHAPTER I1 

ALGORITHMIC PROPERTIES OF SEVERAL 
SEQUENTIAL DECODING PROCEDURES 

In this chapter we investigate and compare some search properties 

o f  three sequential decoding algorithms : the standard Fano['] algorithm; 

a stack algorithm recently introduced by ZigangirovL6I and JelinekE7] ; 

and a new modified version of the Fano algorithm which appears to be 

chiefly of theoretical interest. 

2. A. THE FAN0 ALGORITHM 

Subsequent to Wozencraft's introduction of sequential decoding, a 

number of alternative sequential decoding techniques were introduced, 

the best known of which is the algorithm proposed by Fano['] in 1963. 

The Fano algorithm remains the most popular sequential decoding method, 

f o r  both practical and theoretical purposes, even today. We assume 

the reader's familiarity with the algorithm in the form of Figure 8. 

(Readers unfamiliar with the algorithm will find a discussion in 

Wozencraft and Jacobs"] o r  with a somewhat different viewpoint in 

Gallager['].) In Fano's original work, the test f o r  first visit at a 

node was performed by means of a flag. 

p. 270) that in every case in which the threshold actually has to be 

Gallager has observed ([9], 

17 
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FIGURE 8. Fano Sequential Decoding Algorithm. 
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increased upon a new arrivii.1, the threshold would have been t i g h t  a t  

t he  previous node, 30 t h a t  t h e  flawchart o f  Figure 9 is  equivalent t o  

t h a t  of Figure 8. 

In construct ing the  metr ic  tree t o  be searched, w e  p lace  an 

imaginary branch of i n f i n i t e  metric leading i n t o  the  o r ig in  node. 

This branch serves  as an o r ig in  test s ince  any time t h e  decoder i s  

posi t ioned a t  t h e  o r ig in  and en te r s  t he  LOOK BACK box of  Figure 9,  the  

subsequent test  always fa i ls  and no attempt i s  ever made t o  move back 

from t h e  o r ig in .  

Since t h e  Fano algorithm s a t i s f i e s  conditions J B 1  and JB2 ,  the  

computation a Fano decoder performs must have a d i s t r i b u t i o n  which 

s a t i s f i e s  t he  lower bound (1-4) (assuming i n f i n i t e  t r e e s ) .  I t  has 

been shown t h a t  t h e  Fano decoder meets t h i s  lower bound asymptotically.  

Several i nves t iga to r s  have contr ibuted t o  t h i s  r e s u l t ,  including 

F a l ~ o n e r [ ~ O ] ,  and J e l i n e k [ l l ] ,  who c r e d i t s  an important p a r t  

of h i s  argument t o  Yudkin. In addi t ion,  Yudkin['*] has shown t h a t  t he  

p robab i l i t y  of  e r r o r  with the  Fano decoder i s  optimal for s u f f i c i e n t l y  

high r a t e s ,  and near-optimal f o r  lower r a t e s .  These two r e s u l t s ,  along 

with t h e  ease o f  implementation of  t h i s  procedure, account f o r  the  

widespread i n t e r e s t  t h e  Fano algorithm has a t t r a c t e d .  

2 .  A. 1. Search Proper t ies  o f  t he  Fano Algorithm 

We now descr ibe the  s e t  of nodes searched by the  Fano algorithm 

and t h e  path u l t ima te ly  found by t h i s  procedure. The r e s u l t s  o f  t h i s  

sec t ion  a r e  due t o  Massey and Sain[13' and a r e  s t a t e d  here fo r  

reference.  

Let Sd be some node i n  leve l  d of t he  value t r e e  and l e t  V(sd) 

J s L  denote the  l ikel ihood value a t  node Sd. Suppose Sd, Sd+l, ... 
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FIGURE 9. Fano Algorithm with Gallager's Threshold-tightening Test. 
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are t h e  nodes along some path from sd t O  t he  end o f  the tree. 

say t h a t  t h e  path violates some threshold T i f  fo r  some j, d S j 5 L, 

If we 

V ( s j >  < T, and t h a t  t h e  path satisfies every threshold it does not 

v io l a t e ,  then t h e  t i g h t e s t  threshold s a t i s f i e d  by t he  path Sd, Sd+l, 

... sL i s  

J 1 - min V(sj) b 
LA dSjSL 

where LxJ denotes the  g rea t e s t  in teger  not  g rea t e r  than x. The path 

se l ec t ed  by t h e  Fano decoder is  t h e  path s;, s z ,  

following i t e r a t i v e  condi t ions:  

, s t  defined by t h e  

F 1 :  

F2:  

s* i s  t h e  o r ig in  node. 

For 0 6 i < L, the  branch from s: t o  s ! + ~  i s  t h e  

f irst  branch-of t h a t  path from s f  t o  t he  end o f  t he  
t r e e  f o r  which the  t i g h t e s t  threshold s a t i s f i e d  i s  
g rea t e s t ;  i f  two paths  S : ,  s i+ ly  

S '  a r e  t i e d ,  then whichever o f  the 'two 

f i r s t  branches i s  ordered higher  i s  the  branch from 

0 

sL and ST, 
" . .  , s i  i+l' 

s;  t o  s;+1. 

Rules F 1  and F2 spec i fy  a unique path through t h e  t r e e ,  and t h i s  is the  

path the  decoder w i l l  eventually s e l e c t .  

Having determined which path the  decoder w i l l  choose, we can 

spec i fy  which nodes off  t h a t  path a re  ever  examined during decoding. 

For 0 2 b 6 L,  l e t  TE; denote the  highest  threshold s a t i s f i e d  by the  

f i n a l  path segment f rbm s$ t o  S:; t h a t  i s ,  

Let sd be any node i n  l eve l  d of t h e  t r e e  not on the  f i n a l  pa th ,  and 



22 

l e t  si"; be the  deepest node shared by the  f i n a l  path and the  path t o  Sds 

, Sd, The Fano ... Then t h e  path t o  Sd is -58, s;, . * '  1 s& "+I' 

decoder w i l l  move t o  Sd if 
-c-.-c--- 

vcsk) 2 T< + h fer a l l  k ,  b + l  S k d 

The decoder w i l l  not  ever be posi t ioned a t  Sd i f  
---p* 

v(sk)  < Tg for some k, b + l  & k 6 d 

I n  t he  remaining case, namely v(sk]  2 - T i  f o r  a l l  k ,  b + l  -< k s d, but  

f o r  some such k ,  v(Sk) < Ti: + A ,  t h e  decoder w i l l  search t o  Sd i f  t he  

branch from sg t o  Sb+l is ordered b e t t e r  than t h e  branch from s$ t o  

~ S + V  
Fina l ly ,  t he  number of  forward looks along the  bes t  branch b l  

stemming from a node s[ on t h e  chosen path i s  

If  t h e  branches stemming from s: a r e  bl ,  b2 ,  ..., bn i n  order  of value 

and si+l (k )  i s  the  successor of s? along bk, then t h e  number o f  forward 

looks along bk, k > 1, is  
1 

i f  s,!!;') = s ~ + ~  and one g rea t e r  than t h i s  number otherwise. 

2 .  A.  2 .  Commtation Along t h e  Final Path 

A sens ib le  d e f i n i t i o n  of a '!computation" f o r  t he  Fano sequent ia l  

decoder i s  an en t ry  of e i t h e r  of t h e  LOOK FORWARD boxes of Figure 9.  

In t h i s  sec t ion  we inves t iga t e  t h e  number of  computations performed 
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a t  nodes along the f i n a l  path, From our statements a t  the  end of t h e  

last sec t ion ,  it i s  apparent t h a t  we should inves t iga t e  the! behavior 

of the funct ion 

where si, 

extending from sa t o  the  end of t h e  tree, 

... , si a r e  the  nodes on t h e  segment o f t h e  f i n a l  path 

Note t h a t  Q ( s 8 )  2 0. 

I t  w i l l  be  convenient t a  consider our branch metrics as being 

integer-valued. The actual metrics can be scaled and rounded t o  

in tegers  within any desired degree of accuracy, and i n  fact t h i s  would 

normally be done i n  a real decoder. 

branch metrics take on values i n  some f i n i t e  set  of in tegers  {rl, r2, 

... , % I .  We study t h e  function Q from two poin ts  of view. 

We t he re fo re  assume t h a t  t h e  

F i r s t ,  

we introduce a graphical technique f o r  computing Q ( s 2 )  at  every node 

s;Z when a p a r t i c u l a r  channel e r r o r  pa t t e rn  is  given; t h i s  method 

shows t h e  manner i n  which the occurrence of c l u s t e r s  o r  b u r s t s  of 

e r ro r s  compounds the  d i f f i c u l t y  i n  decoding. 

as a random va r i ab le  and study a s t a t i s t i c a l  model f o r  it. 

Second we consider Q ( s 8 )  

2.A.2.a. Q(s:) f o r  given e r r o r  pa t t e rns .  Suppose t h a t  Q[sZ) i s  

Since the  e r r o r  pa t t e rn  is  given, known and we wish t o  f ind  Q(s3-1). 

w e  can f ind  Zd) t h e  value of  t h e  branch from sd-1 t o  sa. We dis t inguish  

two cases:  

Case 1: QCsi)  = 0. In t h i s  case, V ( s * )  = min V ( s Z )  . If Zd 
dSjSL J 

then V(s;2,1) 5 V[s;2) -a zd S min V ( s * ) ,  so 
d, < e  j ,L 1 

V C S ~ , ~ ]  5: min V(s?) and Remce Q(saT1) = 0. f f ,  on t h e  
d& j SL J 

o ther  hand, zh c 0, Y(s;_,) 

d-16 j 6L j d6jSL 

V(s;), and therefore  

m2n VCs*) = min V(s?)  = V ( s 3 )  Hence Q ( S ~ - ~ )  = d d .  
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If zd > 0, there are two possibilities. If Zd 2 Q(sa), 
< then V[S;*,~] = V(s$] - Zd = min V(s?), and so 
d<, j 2 L  J 

VCS~,~} = min V(s3) J and Q(si - = 0 .  But fo r  
d-12 j I L  

min V(s?r) J = min V(s?) 3 and Q(sa-l) = Q ( s ; )  - zd,. 
dl j $L d-lrjzL 

Combining these observations and noting that 

Q ( s ~ )  = V(si) - min V(s?) = 0 L; J a <  = L  J 

we have the following result: 

a ZL' the For a s e t  of final branch metries zlJ z2, ... THEOREM 1: 

values Q(s( ; I )  along the final path are determine 

C1I QCs;) = 0; 

(2) Q(s;Zpl) = max€Q[s 

Let us restrict cansideratisn new to cases in which the branch 

metrics can take on enly ana positive value; th t is, fl 0 

rj 0, 2 6 j 6 M. Under this assumption, by virtue a$! Theorem I ,  w 
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can q u i t e  e a s i l y  construct  a graph ~f Q(s2)  by t he  following steps: 

Draw a hor izonta l  l i n e  of length I, units ,  each u n l t  
t o  represent  a branch i n  t h e  f i n a l  path.  The r i g h t  
end of t h e  line represents  node s t  and t h e  l e f t  end 
represents so. 
represents  one node. 

Each dividing mark along t h e  l ine  

For each branch f o r  which Zd c 0, labe l  t h e  branch 
with the  value Zd. 

A t  t h e  node preceeding the  rightmost labe l led  branch, 
erect a v e r t i c a l  l i n e  whose height  i s  t h e  absolute 
value of  t h e  l a b e l ,  
t h e  base l i n e ,  draw a l i n e  whose s lope is  equal t o  
t h e  s ing le  pos i t i ve  branch value.  
sects the  base l i n e  a t  some point  t o  the  l e f t  of 
t h e  v e r t i c a l  l i n e .  

From t h e  top of t h i s  l i n e  t o  

This l i n e  i n t e r -  

Working from r i g h t  t o  l e f t ,  a t  the  node preceeding 
each labe l led  branch, e r ec t  a v e r t i c a l  l i n e  o f  
appropriate height  and draw a s l an t ing  l i n e  back 
t o  the  base l i n e .  
branches, s l an t ing  l i n e s  from nodes t o  t h e  r i g h t  
extend back pas t  t he  branch, t he  v e r t i c a l  l i n e  
should be measured o f f  from t h e  highest  such 
s l an t ing  l i n e ,  and not from the  base l i n e .  

If a t  any of t he  labe l led  

The upper boundary o f  the  f igu re  formed when s t e p  
(4) has been performed f o r  a l l  labe l led  branches 
is  a p l o t  of Q ( s 2 )  versus d. 

As an example, consider operat ing on the  binary symmetric channel 

with N = 2,  L = 20. Branch metrics have t h e  form 

z = (2-e) MC + e ME 

where e i s  the  number of discrepancies between the  code symbols on t h e  

branch and the  corresponding received symbols, and MC and ME are 

constants .  Suppose Mc = 1 and ME = -8, and suppose the  e r r o r  pa t t e rn  

i s  00 QO 00 00 00 00 00 01 00 00 00 00 00 If 00 10 00 00 01 00, Thus 

t h e r e  i s  a double BT~OT . f ~  branch 14 a ~ d  s i n  fe e m o m  i n  branches 8, 

16, and 19. The graph of Q ( s 2 )  from s t eps  (1)-(5) i s  shown i n  F i  
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FIGURE 10. Graph o f  Q(si )  for  t h e  Example. 

A 

FIGURE 11. Figure Showing Effect of  Error Clustering on Computation. 
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Since the number of final-path egmputations performed at sa is 

related linearly (neglecting the effects sf quantization) to Q ( s i ) .  i t  

is evident that the total number of Ifnal-path camputations is related 

linearly to the area of the figure produced in the construction. 

Moreover, the graph places in evidence the source of various computations, 

if we partition the figure as shown in Figure 11, by drawing a hori- 

zontal line from the bottom of each vertical line. The areas of 

triangles in the figure represent computations due to the presence 

of errors, regardless of other errors; 

enough error-free branches, only triangles would appear in the graph. 

if errors were separated by 

The extra computation required by proximity of errors is represented 

by parallelograms. 

represents computations due to the double error in branch 14, 

For example, in Figure 11 the area of triangle A 

The 

area of parallelogram B represents computations due to the nearness 

of the double error to the single error in branch 16. The area of 

parallelogram C represents computations due to the proximity of these 

two errors to the error in branch 19. 

It is possible to repeal the restriction to metrics which assume 

only one positive value, but the price is a considerable loss of 

simplicity. Instead of drawing a line of fixed slope from the top of 

the vertical lines to the base line, it is necessary to draw a line 

whose slope over each branch is equal to the (positive) branch value. 

If the construction is carried out with this modification, a plot of 

Q(s$)  results, and the analogous parts o f  the partitioned figure admit 

the same interpretatlen as above. 

2.A.Z.b. A statistical model for Q ( s & ,  Suppose we fix some 

node sa on the final path and investigate the random variable Q ( s 3 ) .  

We allow the frame length L to grow without bound, so that s a  is 
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a rh i t r a r i l y  far fro@ the end of t he  tree, and hence the p rob&i l l t y  

densi ty  functions ~f QCsi] and C ( ~ S & ~ ]  are identfcal. 

common densi ty  fbnct ion P [.) and attempt t o  evaluate i t .  

We denote t h i s  

Q 
We are assuming t h a t  the  bpanch values l i e  i n  the  s e t  {r,, r2, 

* * . ,  I'M}; it w i l l  s implify t h e  ana lys i s  i f  we consider separa te ly  

the  pos i t i ve  and negative values.  Let In,, n2,  e . .  , n,) be t h e  

, mJ) be the  absolute values of the  pos i t i ve  values and Cm1, m2,  . a .  

negative values,  so  t h a t  ( q ,*** ,%l  = {nK, a'., n l ,  - a ~ l ~ - . - ~ - r n J ) .  

Furthermore, l e t  t he  nk and m be indexed such t h a t  n l<n2<*--<nK and 

m l < r n 2 < q * - < m J .  

j 

Final ly ,  l e t  p j  = P r ( z  = - m j l  and qk = Pr{z  = n k l .  

J K 

j = l  k= 1 
Thus 1 p j  $. 1 qk 1. 

Using t h e  fact t h a t  Q(s* )  and Q(s* d d+ 1 

obtain,  f o r  u = nK, 

) a r e  i d e n t i c a l l y  d i s t r ibu ted ,  we 

Equation (2)  suggests a representat ion i n  the  form of a Markov 

chain whose typ ica l  s t a t e s  are as shown i n  Figure 1 2 .  

Far u < nK tRa ana lys i s  is complicated, but i n  a fashion s imi l a r  

t o  the  argument preceeding Theorem 1, it can be seen t h a t  t he  d i s t r i -  

bution P (u) i n  t h i s  range s a t i s f i e s  the  equations a r i s i n g  from s t a t e s  Q 



29 

FIGURE 12. A Typical Sta te  i n  the Markov Chain Model f o r  Q ( s * ) .  
d 

FIGURE 13. Markov Chain Model f o r  Q ( s 2 )  f o r  the  Example. 
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K i den t i ca l  t a  t he  ane i n  Figure 12, except that any tfiansition u + u-n 

which would ''overshoot" the  s t a t e  us0 is reiut& ins tead  i n t Q  the  zero 

s t a t e .  

is shown i n  Figure 13, 

An example sf such a chain w i t h  K=2, J-1, n14, n "2, and ml=2 2 

The equilfbrium d i s t r i b u t i o n  In,,  IT^, . * * * )  of  the  chain so  

constructed is t he  dens i ty  function of QCs:);  i . e , ,  TO = Pq(0), 

"1 = P 9 ( l ) ,  e t c .  

chain, P (u) i s  determined. Q 

Hence i f  t h e  Iru) can Be found for  t h i s  kind o f  

A p a r t i a l  so lu t ion  i s  furnished by the  

following theorem: 

J K 

j=1  k= 1 
THEOREM 2 :  Let D = 1 mjpj - 1 "kqk. 

Proof: Let d+(u) be the  upward d r i f t  - 
downward d r i f t .  Then 

J 

j=1  
d+(u) = 1 mjpj 

(3) 

D, (4 1 

from s t a t e  u and d-'(u) the  

If Inu)  i s  the  equilibrium d i s t r i b u t i o n  of the  chain, then the  average 

values of d+(u) and d-(u) with respect  t o  IrU) must be equal. That i s ,  

03 03 

1 dt(u)ru = 1 d-(u)ru . 
u=o u=o 
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Therefore from (S), 

Changing the sign of both sides yields (4 ) ,  proving the theorem. 

In general, Theorem 2 expresses a linear relation which the 

equilibrium probabilities of the atypical states must satisfy. 

the special case in which K = 1 and nl = 1, Theorem 2 simplifies to: 

In 

COROLLARY: For chains with a single downward transition of unit 

magnitude, 
D IT0 - - 
91 

- (7)  

That is, if there is only one atypical state,  IT^ can be found 

immediately from ( 7 ) .  

by solving the recurrence equations. 

single positive metric value and the values can be normalized so that 

the positive metric has unit value, then the density P (u) can be 

found exactly for all u. 

Then the remaining tu can be found successively 

Therefore, when there is a 

Q 

The Markov chain model for Q(s;2)  was originally proposed by 

Massey[l4I, who also proved the above corollary directly. Theorem 2 
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arose out of  attempts t o  generalize Massey's technique to  apply t o  

chains with more than one atypical s ta te .  

doomed t o  failure.  

it i s  impossible t o  find K independent equations by means of these 

drift-balancing techniques. 

Such a t teyts  are, however, 

Far chains of t h i s  type with K > 1 atypical nodes, 

To see th is ,  note that  the equations 

, "~-1 whose derived are aluays l inear Gapations i n  TO, nl, . * .  
coefficients are integer multiples of pj and qk. 

p -  and qk ere rational. 

d r i f t  equations, then the solutions would again be rational. 

exist chains with rational p. and qk and i r ra t iona l  nu. 

the chain of Figure 14 has nu = (l-S)S', 0 6 u 

Now suppose a l l  the 

If there were a set of K independent l inear  3 

But there 

For example, 
3 

-, where B = & + d m .  

Although it is not always pcssible t o  get an exact solution for 

{rU3 using the drift-balancing method, one can always solve for (nul 

numerically by solving a differencz equation of the form (2;. 

solution has the general form: 

The 

where the eigenvalues Bi are the roots of the equation obtained by 

substituting nu = eU fntc  (z>, that is, 

By Descartes' Rule of Signs, there are  e i ther  - two positive real roots 

of (9 )  or  none. - 
m u s t  be exactly one other positive real mot, say g,. 

g l  cannot be active; that  is, C 1  = 0. The ether pesit ive real  root, 

@2, is active, houever, and is  the dominant eigenvalue. 

nu + K B ~ .  

Since by inspection g = 1 is a root, say B1 = 1, there 

New since = 1, 

As u + 

U Thus we always have P (u) L, f o r  some and r, a fact  B 
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FIGURE 14. A Markov Chain with Rational Transition Probabilities and 
an Irrational Eigenvalue. 
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alluded t o  i n  Chapter X .  

of integermvalued metrics, however. 

f o r  a proof hased on random-walk arguments t h a t  i s  va l id  f o r  any metric 

(This fact does not depend on the  choice 

See Gallager ( [9] ,  pp. 312 f f . )  

of t h e  form (I-l).) 

A c la s s  of  chains i n  which it is  pa r t i cu la r ly  simple t o  f ind the  

exact solut ion f o r  t h e  equilibrium probabi l i t i es   IT^, rl, r2, .... 
once the  dominant eigenvalue has been obtained, are those with only 

one upward t r ans i t i on  of unit  magnitude, J = 1, ml = 1. The chain of 

Figure 14 i s  an example of such a chain, and l i k e  t he  chain of Figure 

14, a l l  such chains have a s ingle  ac t ive  eigenvalue: mu = K f P  f o r  a l l  

(Since IT, = 1, K = 1-8.) To prove this" ,  we show tha t  Tk-tl/Tk is  

independent of k .  Suppose we have a long sequence of numbers which 

represent the  t r a j ec to ry  of a p a r t i c l e  behaving as  specif ied by the  

chain of Figure 15a. 

be the  number of  occurrences of k i n  t h e  sequence. 

Nk/N -t rk .  

representing a move from s t a t e  n t o  s t a t e  0 which i s  an "overshoot" 

move, t h a t  i s ,  one which would have been longer than n s teps  is  there  

had been room, l e t  us place a symbol E between the  n and the  0.  This 

increases N but does not a f f ec t  any Nk.  The new sequence is  a sample 

t ra jec tory  from t h e  chain of  Figure 15b. Now consider adding af ter  

each E i n  the  new sequence j more E s ,  where j = 0 with probabi l i ty  p, 

j = 1 with probabi l i ty  p(1-p), * ' *  , j = i with probabi l i ty  p(l-p)i .  

Again N has been increased, but no Nk has been changed, and the new 

Let N be the  length of the  sequence, and l e t  Nk 

Then as N + 00,  

Now f o r  every adjacent p a i r  (n,O) i n  the  sequence 

U. 

sequence i s  a sample t r a j ec to ry  from t h e  chain of Figure 15c. 

chain of Figure 15c i s  exact ly  the  same chain as  t ha t  of Figure 15a, 

Now t h e  

e-. 

* This simple proof was suggested by M a s ~ e y [ ~ ~ ] .  
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"normalrr 2-0 
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* \  rlovershootfr 2-0 -cI 
"overshootft 1-0 
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transitions 

FIGURE 15. Steps in the Proof of the Single Active Eigenvalue Property. 



36 

with state E in the former corresponding to state 0 in the latter, and 

state k in the former corresponding to state k+l in the latter, k b 0. 

Let Ne, denote the length of the sequence we have constructed by adding 

E s .  Looking at the chain of Figure 15a, we have 

But from the chain of Figure 15c, we conclude 

- "k+2 - - Nk+l/Nex - Nk+ 1 
"k+ 1 NL/N, , -Nk  

2 .  B. THE ZIGANGIROV-JELINEK ALGORITHM 

Despite its relative ease of implementation, the Fano algorithm 

is conceptually a complicated scheme. 

Zigangirov'61 and Jelinek'" have suggested a sequential decoding 

Recently, in independent work, 

algorithm which is quite simple, and which exhibits more clearly the 

essential nature of sequential decoding. In addition, when the 

algorithm is suitably modified, its performance is in many cases 

superior to that of the Fano algorithm, provided that sufficient 

memory is available for use by the decoder. In ,this section we describe 

the Zigangirov-Jelinek decoder and compare some of its properties to 

those given previously f o r  the Fano algorithm. 

The decoder consists of an ordered list of nodes, called a stack, 

in which the nodes are listed in decreasing order of likelihood values. 

Thus the 'Yoptr node is (one of)  the node(s) of greatest value among 

the nodes on the stack. The stack is initially loaded with the origin 
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node, whose value i s  taken t o  be zero, and i s  processed according t o  

the  following r u l e s :  

(1) Compute the  values of  t he  successors of t h e  top 
node and add them t o  t h e  s tack i n  the  places  
determined by t h e i r  values. 

(2) Delete the  node whose successors were jus t  added. 

(3) If the  new top node is i n  the  l a s t  l eve l  of t he  
tree, s top .  Otherwise, go t o  (1). 

When the  algorithm h a l t s ,  the  node a t  t h e  top of t he  s tack 

determines the  path se lec ted .  Taking a computation t o  be an execution 

of s t ep  ( l ) ,  t h e  number o f  computations required t o  decode a t r e e  i s  

one less than t h e  s i z e  of t he  s tack when the  decoder h a l t s .  

We s t a t e  two conditions which are s a t i s f i e d  by a t  l e a s t  one 

path through the  t r e e ,  and then undertake t o  prove t h a t  the  Zigangirov- 

Je l inek  decoder s e l e c t s  one of these paths .  For a path Sd, Sd+l,  ... 9 

sL, 0 5 d S L, def ine t h e  minimum value of t he  path t o  be 

The conditions a re :  

min V ( s . ) .  
d; j IL 7 

Z J 1 :  

252: 

sc i s  the  o r ig in  node. 

For 0 2 i < L, t he  branch leading from sz t o  S Z + ~  
i s  the  f i r s t  branch of one of  t he  paths 
from s; t o  the  end of t he  tree having g rea t e s t  
minimum value. 

Conditions Z J 1  and 252 do not specify a unique path through the  

t r e e  as  do F 1  and F 2 ,  because the  ac t ion  i n  case o f  t ies  i n  252 i s  not 

spec i f ied .  I t  w i l l  be seen t h a t  the  problem o f  resolving t i e s  among 

path minima with the  Zigangirov-Jelinek decoder is  qu i t e  complicated, 

depending not only on how t ies  a re  resolved i n  t h e  s tack ,  but upon t h e  

values of ce r t a in  nodes along t h e  paths  concerned as wel l .  We w i l l  be 



38 

content t o  show t h a t  t he  ZigangirovvJelinek decoder s e l e c t s  one of 

t he  paths  sa t i s fy ing  Z J 1  and 252. 

Let Sdl 0 2 d 6 L, be a node i n  the  tree, and suppose the re  i s  a 

, sL from Sd t o  the  end of t h e  t r e e  such t h a t  ... path Sds Sd+l' 

Then Sd is  ca l l ed  a breakout node*. If 

then we w i l l  c a l l  Sd a s t r i c t  breakout node. 

LEMMA: If Sd is  a s t r i c t  breakout node and Sd reaches the  top of t h e  

s tack ,  then Sd i s  on the  f i n a l  path ( i . e . ,  t he  path se lec ted  by 

the  decoder). 

Proof: Let s '  be the  second node on the  stack when Sd reaches the  - 
top of t h e  stack. Then 

Let Sdy Sd+l, 

which (10) holds.  

by (10) and ( l l ) ,  Sd+l i s  above s ' ,  and hence Sd+l is extended before 

s '  is .  

and so on out t o  SL. 

appears a t  t he  top of the  stack, which means t h a t  Sd is  on t h e  f i n a l  

path,  a s  claimed. 

SL be a path from Sd t o  t h e  end of  t h e  tree f o r  

Now a f t e r  Sd i s  extended, Sd+l is on the  stack, and 

Thus Sd+2 appears on the  s tack ,  and a s  before,  Sd+2 i s  above s s 9  

Thus some successor of Sd a t  the  end of t he  t r e e  

THEOREM 3: The path se lec ted  by t h e  Zigangirov-Jelinek decoder i s  a 

path sa t i s fy ing  Z J 1  and 252. 

* This terminology i s  due t o  Gallager [91 . 



39 

Proof: Note first t h a t  t h e  minimum value along a path from si t o  - 
the  end of  t h e  t r e e  i s  the  value of the  first s t r ic t  breakout node 

among S i ,  S i + 1 ,  ... , sL (sL i s  a s t r i c t  breakout node, so  there  i s  a t  

least one). 

Let s6. s;, , s t  be a path sa t i s fy ing  Z J 1  and 252. Suppose 

sB1 is the  f irst  s t r i c t  breakout node along t h e  path.  In Figure 16 l e t  

t h e  o ther  paths represent  any paths emanating from the  nodes shown, and 

l e t  the  nodes s ( j )  be the first s t r i c t  breakout nodes along those paths .  

Since t h e  path s;, s ; , . . . ,  s t  s a t i s f i e s  252, 

Since s* i s  t h e  first s t r i c t  breakout node, Bl 

Suppose f i rs t  t h a t  (12) holds with s t r i c t  inequal i ty  f o r  a l l  j .  

Now s ( j )  cannot appear on the  s tack u n t i l  s* has been extended, and 

thus u n t i l  s f+ l  has appeared on t h e  s tack.  

V(s;+l) 5 V(sgl) > V(s(j)), s ; + ~  w i l l  reach the  top of the s tack before 

s ( j )  does. ( I t  may reach the  top of the  s tack  before s ( j )  even appears 

on the  s tack . )  Hence s * + ~  w i l l  appear on the  s tack before s ( j )  reaches 

the  top of t he  s tack,  and so  w i l l  be above s ( j ) ,  and s o  on. B 1  

w i l l  appear on the  stack before s ( j )  reaches t h e  top,  and by (12), s* 

w i l l  reach t h e  top of the  s tack before s ( j )  does. Now j is a r b i t r a r y ,  

and one o f  t he  s ( j )  o r  s& must eventually reach the  top of t he  s tack ,  

so  it must be S* . 
segment of the  se lec ted  path.  

j 

Since 

* 

J 
Thus s* 

B1 

Hence by the  Lemma, sa, s : ,  , sSl is the  i n i t i a l  
B 1  

In t h e  event t h a t  f o r  some j , V(sil) = V(s (j I), then a path from 
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S" 
B 1  

FIGURE 16. The I n i t i a l  Segment 
Branching Paths.  

of t h e  Selected Path and Some 

d 

FIGURE 1 7 ,  An htermed2ate  Segment o f  t h e  Selected Path and Some 
Branching Paths. 
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* t o  t h e  end of t h e  t r e e  passing through s ( j )  a l s o  s a t i s f i e s  Z J 1  and 

252. 

one of the  two paths;  i . e . ,  e i t h e r  s (j) or s* 

t h e  s tack  first,  but which one depends on how t ies  a re  resolved i n  t h e  

stack, and on the  values of t he  nodes between s; and s ( j )  and the  nodes 

between s3 and sbl. 

The same argument as  above shows t h a t  the  decoder w i l l  select 

w i l l  reach the  top of B1 

Now consider Figure 17, which i s  s imi l a r  t o  Figure 16 except t h a t  

t he  o r ig in  node i s  replaced by the  i t h  s t r i c t  breakout node, s i i ,  and 

If sii reaches t h e  top of ' B i + l  

t he  s tack,  t h e  Lemma guarantees t h a t  sii i s  on t h e  f i n a l  path,  so  any 

processing of nodes which a re  below sfji when t h e  l a t t e r  reaches t h e  top 

of the  s tack  cannot a f f e c t  t he  f i n a l  choice of path.  

consider the  processing of these  nodes a s  independent of the  processing 

of t he  nodes shown i n  Figure 17 .  

t o  show t h a t  sii+l reaches the  top of t h e  s tack before any s (j) , barr ing  

t ies.  

* is  the  ( i + l ) s t  s t r ic t  breakout node. 

Thus w e  may 

Then the  same argument as  above appl ies  

Combining the  arguments shows t h a t  t he  successive s t r i c t  breakout 

nodes along some path sa t i s fy ing  Z J 1  and 252 a r e  nodes on t h e  f i n a l  

path.  

t h a t  the  path se lec ted  i s  one which s a t i s f i e s  t he  conditions,  and t h e  

theorem i s  proved. 

Since t h e  terminal node s t  i s  a s t r ic t  breakout node, t h i s  shows 

Now l e t  sb ,  SI, - . a ,  sE be the  path se lec ted  by t h e  Zigangirov- 

Je l inek  decoder. If sfi i s  t h e  f irst  s t r ic t  breakout node among the  

... , s t ,  then V ( s f j )  = min V ( s * ) .  Now consider J nodes sa ,  
d6 j IL 

... Figure 18, where si, Sd+l, 

sa. 

i s  any o ther  path emanating from 
'd+k 

Suppose v(Sd+j) > v(s*,), 1 S j < k, and Vfsd+k) < V(S*,). m e n  
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Sd+2 - _1 SJ .l. 

S* B 

FIGURE 18. A’Segment of the Selected Path and a Branching Path. 
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s ince  si i s  on t h e  f i n a l  path,  it eventual ly  reaches t h e  top of t he  

stack, but since each Sd+j, 1 6 j < k, has value g rea t e r  than V(sb), a l l  

of  these  nodes reach t h e  top of t he  s tack before s i .  

V(Sd+k) <  si), si reaches the  top of t he  s tack  before Sd+k and since 

si i s  a s t r ic t  breakout node, Sd+k never reaches the  top  of  t h e  s tack--  

there w i l l  always be a node s: on t h e  s tack such t h a t  

V ( S 2 )  > V(SB) > V(sd+k) . 
t he  extending of nodes not on the  f i n a l  path:  

Since 

This proves the  following theorem concerning 

THEOREM 4 :  With the  notat ion of Figure 18, 

(1) Sd+k reaches the  top of t he  s tack i f  

v (sd+j )  > min V ( s r ) ,  1 6 j S k ;  
dli2L 

(2 )  Sd+k does not reach the  top of the  s tack i f  f o r  any 

such j ,  

v (sd+j )  < min V(sz) . 
dl;il;L 

The p o s s i b i l i t y  not covered i n  t h e  theorem, namely v(sd+j )  2 min V(s:), 
driGL 

1 I j I k, with equal i ty  f o r  some such j ,  depends, as  before ,  on t h e  

resolving of t i es  i n  the  s tack and on intermediate node values .  

The Zigangirov-Jelinek algorithm, while of t heo re t i ca l  i n t e r e s t ,  

i s  impractical  because of t h e  time required t o  keep t h e  s tack ordered 

exact ly .  Je l inek  f 7 3  has proposed a quantized version of the  algorithm 

i n  which nodes a re  placed i n  bins  according t o  t h e i r  values.  

f o r  some H > 0, a node s i s  placed i n  bin k i f  kH S V(s) < (k+l)H. 

That i s ,  

The use of bins  r a t h e r  than an ordered s tack obviates t he  need t o  search 

the  s tack  when nodes are t o  be added. The s t eps  i n  the  modified 

algorithm a r e  as  follows: 
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(1) Select  any node from the  highest  non-vacant b in ,  
compute the  values of i t s  successors,  and place 
them i n  the  proper b ins .  I 

(2)  Delete the  node whose successors were j u s t  added. 

(3)  If any node i n  the  highest  non-vacant b in  i s  i n  the  
last leve l  of  the  t r e e ,  s top .  Otherwise, go t o  (1). 

Extensive computer simulation s tud ie s ,  reported i n  the  next 

chapter ,  i nd ica t e  titat the  Je l inek  algorithm i s  i n  most cases o f  

i n t e r e s t  superior  t o  the  Fano algorithm, provided t h a t  la rge  s torage  

capab i l i t y  is provided the  decoder. 

We s t a t e  without proof the  following theorems, analogous t o  

Theorems 3 and 4, and proved s imi l a r ly .  

THEOREM 5: The path s6, s;, ... , s t  se lec ted  by the  Je l inek  decoder 

s a t i s f i e s  t he  following two condi t ions:  

J1: 

5 2 :  

sc  i s  the  o r ig in  node. 

For 0 S i S L - 1 ,  t he  branch leading from sf t o  
"+ 1 i s  the f i r s t  branch of one of the  paths  
from sz t o  t he  end of the t r e e  whose lowest- 
value node belongs i n  the  highest  b in .  

THEOREM 6 :  Let Sd+k be a node i n  l eve l  d+k of t he  t r e e ,  not on the  

se l ec t ed  path,  and l e t  s z  be the  deepest node shared by t h e  

se lec ted  path and the  path t o  Sd+k. be a node such 

t h a t  V ( s *  ) = min V ( s j r ) .  Then Sd+k reaches the  top of  t he  

Let s* j 1  

< .<  J J1 d,j=L 

stack i f  every node Sd+i ,  1 5 i Si k ,  belongs i n  a higher  

b in  than s3al; Sd+k does not reach the  top of  t he  stack if 

for  any such i, Sd+i belongs i n  a lower b in  than s? . 
I 1  

I t  i s  evident t h a t  5 2  i s  simply a quantized vers ion of 252.  Moreover, 

the  quant izat ion of node values i n t o  b ins  of width H corresponds t o  the  
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quantization by thresholds (1) with the Fano algorithm: 

show that, except for the effect of ties, the Fano and Jelinek decoders 

choose the same path through the tree. 

examined by the two decoders is the same, again excepting the effect 

of ties. A s  H and A are increased, of course, the effect of ties 

becomes more pronounced. 

F2 and 52 

In addition, the set of nodes 

2. C. A NEW UNQUANTIZED FAN0 ALGORITHM 

In the previous section we described the Zigangirovdelinek 

algorithm and a modification, the Jelinek algorithm, based on quantizing 

node values. 

the two algorithms have identical search patterns. 

noted that the bin width H in the Jelinek algorithm plays the same 

role as the threshold increment A in the Fano algorithm, and that, 

excluding the effect of ties among quantized node values, the set of  

nodes examined, and in particular the final paths for these two 

algorithms coincide. 

We saw that, except for the effect of quantization, 

In addition, it was 

In view of this it is natural to wonder if there is some algorithm 

which, like the Zigangirov-Jelinek algorithm, is unquantized, but which, 

like the Fano algorithm, substitutes a back-and-forth search capability 

for the requirement of node storage. 

modification of the Fano algorithm which fills t h i s  vacant place 

among the algorithms. 

In this section we give a 

Before describing the algorithm, we shall make some more remarks 

about the metric trees which these algorithms are meant to search. 

Consider drawing contours in the tree, as shown in Figure 19. 

contours have an analogous interpretation to that of contours on a 

These 
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FIGURE 19. A Metric Tree Showing Contours Drawn for Values 0, -4 ,  
-8, and - 1 2 .  
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topographical map; namely, each node i n  the  region enclosed by a con- 

tou r  has value no l e s s  than the  value assigned t o  the  contour. I t  i s  

c l e a r  t h a t  among the  branches crossed by t h e  contour, exact ly  one is  

d i rec ted  i n t o  the  region enclosed, and a l l  o thers  a r e  d i rec ted  out of 

it. 

a l l  o thers ,  s ince  we a r e  adding t o  t h e  t r e e  a branch of i n f i n i t e  metr ic  

leading i n t o  the  o r ig in  node, as discussed on page 19. 

t h a t  t he  contours a r e  drawn a t  in t e rva l s  of  A .  

t he  Fano algorithm w i l l  lead t o  the following conclusions: 

- -- 
This appl ies  t o  contours enclosing the  o r ig in  node as  well as 

Now suppose 

A l i t t l e  thought about 

The decoder can move across a contour i n t o  a region 
unimpeded, but once i n  t h e  region, it cannot move 
out of it i n  any d i r ec t ion  u n t i l  the  threshold i s  
lowered. 

The threshold i s  t ightened t h e  f irst  time the  
decoder crosses t h e  contour headed i n t o  the  region.  

Before decreasing the  threshold and leaving a 
region, t h e  decoder w i l l  v i s i t  every node i n  the  
region. 

The threshold i s  lowered only a t  t he  node a t  t he  
end of  t h e  branch which leads i n t o  the  region, i . e . ,  
t h e  first node i n  the  region t h a t  t h e  decoder 
v i  s i t e d  . 
After t he  decoder has departed from the  region 
enclosed by a contour, t h a t  contour has no e f f e c t  
on subsequent searches.  

Two annoying p o s s i b i l i t i e s  f o r  metric t r e e  configurations a r e  

shown i n  Figure 20. 

between contours T and T-A. Hence a f t e r  the  decoder searches t h e  

region enclosed by contour T,  it lowers the  threshold t o  T-A and 

proceeds t o  search exact ly  the  same s e t  of  nodes again,  so  t h a t  

nothing i s  gained by lowering the  threshold t o  T-A. In Figure 20b, 

In Figure 20a, t he re  are no nodes i n  the  region 
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(b 1 

FIGURE 20. Two Undesirable Metric Tree Configurations. 
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on the  o ther  hand, a grea t  many nodes, and even new enclosed regions,  

l i e  between T and T-A, so t h a t  lowering t h e  threshold from T t o  T-A 

makes many new moves poss ib le .  

l i k e  Figure 20a are common, while f o r  la rge  A ,  t h e  configurat ions of 

Figure 20b occur q u i t e  of ten .  

When A i s  chosen small, s i t u a t i o n s  

The new algorithm i s  based on the  p r inc ip l e  of avoiding these  

unpleasant extremes; t h a t  i s ,  i n  lowering the  threshold we wish t o  

avoid ( 1 )  lowering it so l i t t l e  t h a t  no new moves a re  poss ib le ,  and 

(2) lowering i t  so  much t h a t  a plethora of  new moves i s  presented. 

Our approach w i l l  again amount t o  searching i n  contours i n  accordance 

with (1)-(5) above, bu t  t he  contours w i l l  be drawn, not i n  in t e rva l s  

of A ,  but t o  correspond t o  the  exact values of  t h e  nodes. That i s ,  

i f  T1 and T2 a r e  adjacent contours, with T 1  < T 2 ,  then i n  t h e  region 

between T 1  and T2 a r e  nodes of value T1 and only such nodes. For 

example, the  t r e e  o f  Figure 19 is  redrawn i n  Figure 21, t h i s  time with 

contours corresponding t o  the  exact node values ins tead  of  i n  in -  

crements of 4. I t  is  c l e a r  t h a t  t h e  s i t u a t i o n  i n  Figure 20a cannot 

occur when the  contours are so  drawn, and t h a t  t he  s i t u a t i o n  i n  

Figure 20b can occur only i f  there  a r e  many nodes of t h e  same value 

j u s t  ou ts ide  a contour. 

To search the  t r e e ,  each time a proposed forward move i s  blocked 

( tha t  i s ,  t he  move would lead out of  a contour which has not been 

f u l l y  searched),  t he  decoder notes  the  value of the  inaccessible  node 

and saves the  l a rges t  such value,  K. When the  region within t h e  con- 

tou r  has been completely searched and t h e  decoder re turns  t o  the  f i rs t  

node i n  the  region, t h e  threshold must be lowered. 

would lower by A and undertake t o  move forward again,  without guarantee 

The Fano decoder 
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FIGURE 21. The Metric Tree of Figure 19 With Contours Drawn Corresponding 
to Exact Node Values Between 0 and -10. 
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o f  success.  

assure  the  p o s s i b i l i t y  of a new move forward; but  before  doing so ,  it 

considers t h e  p o s s i b i l i t y  of  a backward move. 

predecessor o f  t he  present  node is  g rea t e r  than K ,  the  threshold i s  

lowered t o  t h a t  value.  Recognizing t h a t  forward searching with t h i s  

threshold is  f r u i t l e s s ,  the  decoder immediately moves backward. If,  

on the  o ther  hand, K equals o r  exceed the  value o f  the  predecessor, 

t he  threshold i s  lowered t o  K and forward searching resumes. 

case,  t h e  threshold is  lowered j u s t  enough t o  escape from the  present  

contour. 

The unquantized decoder knows t h a t  lowering t o  K w i l l  

If t he  value of t h e  

In e i t h e r  

A flowchart of t h e  unq-uantized Fano algorithm i s  given i n  

Figure 22 .  

algorithm (Figure 8) a r e  the maintenance of the  forward blocking 

value K ,  t he  rout ine  f o r  lowering the  threshold,  and the  absence of  

the  threshold incerment A .  In the  new algorithm, the  t ightening of  

T i s  done exact ly;  t h a t  i s ,  T i s  s e t  equal t o  the  node value a f t e r  

the  f irst  move t o  a node. 

The only d i f fe rences  between t h i s  and the  o r ig ina l  Fano 

We now study the  ac t ion  of  t h i s  algorithm i n  more d e t a i l .  Fol- 

lowing Massey and Sain[13], w e  f irst  inves t iga te  t h e  search proper t ies  

of the  algorithm when appl ied t o  "trunks," o r  degenerate t r e e s  i n  

which each node (except the  las t )  has a s ing le  successor.  

case,  t he  flowchart can be s impl i f ied  t o  t h a t  of  Figure 23 .  

In t h i s  

Consider t he  trunk of Figure 24.  Each V .  i s  the  value a t  t he  

For a f ixed j ,  

J 

corresponding node s and VO i s  taken t o  be zero. j *  
0 S j .I: L, def ine U(j)  = min V i  , j S k 6 L .  Then we have 

' jgi2k 

U:fi 2 U:j), j 2 k S L .  Let k19 k 2 ,  * - - ,  km be t h e  values o f  k 
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F I G U R E  22. Unquantized Fano Sequential Decoding Algorithm. 
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FIGURE 23. Unquantized Fano Trunk Search Algorithm. 
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FIGURE 24. A Metric Trunk. 

FIGURE 25. Determination of ki for a Typical Metric Trunk. 

sd 3 -1 kl S' km-1 "dm S' S' 
j S !  

j' 
FIGURE 26, A Trunk Equivalent to That of Figure 24 Between s and s j -1 
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d i s t i n c t  values assumed b.y U'', and moreaver, U c j 2  = vk, ,  ..* 

' k  , k, 9 
.L .L 

Vk,. As a c l a r i fy ing  example, see  Figure 25. 

LEMMA 1: With respect  t o  the  ac t ion  o f  t he  decoder between nodes 

s j - l  and s j ,  t he  trunk o f  Figure 26 is  equivalent t o  t h a t  

of Figure 24.  

Note: We w i l l  r e f e r  t o  t h e  trunk of Figure 24 as P,  and t o  the  

trunk of Figure 26 as P ' .  The nodes o f  PI  a r e  labe l led  with t h e  

subscr ip ts  of t h e  nodes i n  P which have t h e  same value, so t h a t  

subscr ip ts  i n  P I  do not ind ica te  t h e  depth of t h e  node. 

Proof of Lemma 1: First consider t h e  case when V j  < V j - 1 .  Let 

k = j and Uij)  = V j .  Upon first moving t o  s j - l  i n  P and t o  s ; - ~  i n  P I ,  

t he  threshold i s  t ightened; t h a t  is ,  T = V j - 1 .  In searching P ,  a 

forward look (F look) i s  made, K i s  s e t  t o  Vj, and back looks and 

moves (B looks and B moves) a r e  made u n t i l  e i t h e r  t h e  o r ig in  i s  

reached or a node of  value l e s s  than or equal t o  K i s  seen, a t  which 

time T is s e t  t o  K = V .  and F searching proceeds, including an F look J 

and an F move from s j - l t o  s 

with T = Vj-1 and one with T = Vj, and one F move with T = V j  have 

been made from s j - l  t o  s 

0 0 

Up t o  t h i s  po in t ,  two F looks, one j -  

By inspect ion,  t h i s  agrees with t h e  ac t ion  j .  

of t h e  decoder i n  searching P '  up t o  the  f irst  move t o  s j .  

Now suppose the  ac t ion  of t he  decoder on P up t o  the  first move 

t o  ski agrees with t h a t  on P '  up t o  the  first move t o  sii.  

nodes between s 

and F moves a r e  prefer red  i n  case of t i e s ,  so  the  decoder moves t o  the  

node preceeding Sk A t  t h a t  time, K i s  s e t  

t o  Vki+l and B searching begins and continues pas t  s 

In P ,  a l l  

and Ski+l (exclusive) have values no l e s s  than vki ,  
k i  

without a r e tu rn  t o  Ski. 
i+l 

toward so u n t i l  j 
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the  o r ig in  i s  reached o r  a node of value not exceeding K i s  seen, when 

T i s  decreased t o  K and F searching resumes, culminating i n  a move t o  

The decoder act ion between s j - 1  and s j  between the  first move ' k i + l *  

t o  Sk 

t o  Sj-1 with T = Vki and an F look and an F move from s j - 1  t o  s j  with 
j 

and the  first move t o  Sk i i+l i s  a B look and a B move from s 

By inspect ion,  t h i s  is  the  same ac t ion  as  i n  P' f o r  the  

By induction, t he  lemma i s  proved f o r  

i+l T = vk 

corresponding span o f  moves. 

the  case Vj < V j - 1 .  

f o r  t he  f i rs t  j -1 For V .  > V j - 1 ,  note t h a t  we may have U(j)  2 V 
J k i  

i* 
few i. Let i *  be t h e  l e a s t  index i such t h a t  $1 Vj-1. We first 

show t h a t  P and P' a r e  equivalent between the  ( j - 1 ) s t  and j t h  nodes 

up t o  t h e  first move t o  Ski*. S t a r t i ng  a t  s j - 1  with T = Vj-1, an F 

look and an F move a re  made t o  s j ,  and T i s  s e t  t o  V j .  Searching t o  

-1 proceeds without r e tu rn  t o  s j ,  but a t  s k  -1, K i s  s e t  t o  vkl 
1 

and t h e  decoder searches back t o  s 

Since K 2 Vj-1, T is lowered t o  K and F searching begins. 

repeated a t  each s k . - l  up t o  the  node preceeding Sk i* .  

K is s e t  t o  v k i *  and B searching t o  s 

time, however, K < V j - 1 ,  so T i s  lowered t o  V j c l ,  a B move t o  S j - 1  i s  

made, and B searching continues u n t i l  T is  lowered t o  K .  Then F 

and looks back t o  s j V r  with T = v j .  
j 

This is  

A t  t h a t  po in t ,  
1 

is  performed as  before.  This j 

searching resumes and the  decoder moves t o  Sk 

The t o t a l  contr ibut ion t o  searching between sj-1 and s j  i s :  

f o r  t he  f irst  i *  

an F look from s j - l  t o  s .  with T = Vj- l ;  

an F move from sj-1 t o  s .  with T = V j - 1 ;  

i* B looks from s 

a B move from s 

an F look from Sj-1 t o  Sj with T = vki*; 

J 

J 

j '  'kl' . t o  sj- l  with T = V 

t o  s j - l  with T = V j W l ;  

j 

j 

an F move from s jV1 t o  s j  with T = 'ki* 
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Again by inspection, this is exactly the action of the decoder on PI 

for the same period. 

the lemma for this case. 

The induction step is exactly as before, proving 

It remains to consider the case Vj = Vj-l. Letting ko = j, in 

both P and P' there is one F look and one F move from sj-1 to sj with 

Then by induction T = Vj-1 = V 

as before, the lemma follows for this final case. 
o up until the first move to sk j 

From the proof of Lemma 1, we can count the number of operations 

performed : 

LEMMA 2 :  Using the notation developed above, the numbers of F looks 

and F moves from sj-l to s .  and B looks and B moves from 

s j  to sj-1 is as follows: 
I 

F looks m+ 2 m+2-i* m+ 1 

F moves m+ 1 m+2-i* m+ 1 

B looks m m m 

B moves m m+l-i* m 

By invoking Lemma 1 and considering the action of the decoder on 

trunks of the form of Figure 26, we conclude: 

LEMMA 3: If an F move is made from node sj with threshold T, then the 

next B move to s (if there is one) is also made with 

threshold T. 
j 

Lemma 3, which Massey and Sain[13] call the "superposition 

propertyI" is significant in that it allows us to extend the analysis 
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t o  t r e e  searches.  Note t h a t  a consequence of  Lemma 3 i s  t h a t  t he  

threshold is  always lowered t o  a value T a t  t h e  last  point  a t  which 

it was ra i sed  t o  the  value T.  

Consider t he  diverging paths of Figure 27.  By Lemma 1 ,  t o  study 

the  ac t ion  of t he  decoder at  node s 

and unprimed paths  by appropriate paths  of decreasing node value.  

Let k l '  5' ... , km be the  depths a t  which Uij")  assumes i t s  values 

along t h e  unprimed path,  and R1, 

primed pa th ,  

we may replace both t h e  primed 3 

..., Rn t h e  depths f o r  t h e  R2 , 
Then w e  may replace Figure 27 by Figure 28 .  

If t h e  decoder reaches Sk i n  Figure 28, then it w i l l  reach sL 
m 

i n  Figure 27,  and i f  it reaches s F  

si i n  Figure 27 .  

i n  Figure 28 ,  then it w i l l  reach 

Thus t o  determine which path i s  chosen, given t h a t  
Rn 

the  choice is  between these two, we must see  which of t he  nodes s o r  
km 

S I  is  reached first.  
Rn 

Suppose the  branch from s j  t o  S j + l  is  %better" than t h e  branch 

from sj t o  s ; + ~ ;  t h a t  i s ,  e i t h e r  V j + l  > V j + l  o r  V j + l  = V j + l  and t h e  

decoder somehow resolves  the  t i e  i n  favor of S j + l .  

several  cases:  

We dis t inguish  

If V 2 V .  (which requires  Vj+l  2 V . ) ,  after the  first F move km J 1 

t h e  decoder never re turns  t o  s Hence t h e  unprimed path i s  

se lec ted ,  and i n  f a c t ,  no F look i s  ever made along the  primed path.  
to S j + l  j '  

In t h i s  case,  t he  m i n i m u m  along the  unprimed path seen from s 

while along t h e  primed path it i s ,  of course, a t  most V 

i s  Vj, j 

j *  
If Vj > vkm 1 V i n ,  t he  threshold must eventually be lowered t o  

vkm; by Lemma 3,  t h i s  lowering must take place a t  o r  before Sj. 

t he  threshold i s  so lowered, t h e  decoder proceeds out t o  Sk 

t he  unprimed path i s  se lec ted .  

After 

and hence 

F moves a re  made along t h e  primed path 

m 
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SL-1  sL 

FIGURE 2 7 .  Branching Metric Trunks. 

FIGURE 28 .  Branching Metric Trunks Equivalent t o  Those of Figure 27 .  
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t o  a l l  nodes s 1  such t h a t  V i  > V In t h i s  case the  minimum seen a i  i km' 

along t h e  unprimed path from s is vk 
j m 

and t h e  minimum seen along the  

primed path i s  V '  an ' 
If V j  > V i n  > Vkm, the threshold i s  eventually lowered t o  V '  

or before s j ,  and t h e  decoder proceeds out t he  unprimed path with t h i s  

threshold i n  force.  Unable t o  move t o  the  end, it re turns  t o  s and 

and proceeds out t h e  primed path (with the  same threshold,  by Lemma 3 ) ,  

a t  
En 

j 

t o  t he  end. Therefore, t he  primed path i s  chosen, and F moves a r e  

made t o  a l l  nodes Sk i 
minimum seen along the  unprimed path i s  V 

is  V '  . 
Rn 

on the  unprimed path such t h a t  vki L V l n .  

km 

The 

and along the  primed path 

If VL h v j  v then a f t e r  t h e  f i rs t  move t o  s j + 1  no r e tu rn  i s  
n 

made t o  s 

path are examined i f  t h e i r  values equal o r  exceed V 

along t h e  primed path is  V 

Hence the  primed path i s  chosen. Nodes i n  the  unprimed j. 
The minimum 

j '  

km * 
and along the  unprimed path is  V 

j 
The cases considered above a r e  exhaustive, and we may apply the  

reasoning t o  every branching point  i n  the  t r e e ,  s o  we have proved t h e  

following theorems: 

THEOREM 7: The path s:, s;, . * * ,  s i  through the  t r e e  found by the  

unquantized Fano decoder i s  defined by the  following 

condi t ions:  

MF1: 

MF2: 

s6 is  the  o r i g i n  node. 

For 0 5 i 5 L-1,  t he  branch leading from sz 
SZ+1 i s  the  first branch of  t h a t  path from s$ 
t o  t he  end o f  t he  t r e e  having g rea t e s t  minimum 
value; 
branches a r e  t i e d ,  then whichever of t h e  two 
f irst  branches i s  b e t t e r  i s  the  branch from s; 

i f  two paths  with d i f f e r e n t  f irst  

t o  Sf+l. 
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THEOREM 8 :  Let Sd be any node i n  level d of the t r e e ,  nqt Qn t h e  f i n a l  

path, and l e t  "2 be the  deepest node shared by the f ina l  

path and t h e  path t o  Sd. The decoder w i l l  be posit ioned 

a t  Sd sometime during decoding i f  and only if 

with the  provision t h a t  i f  equal i ty  holds f o r  any k, t he  

branch from sg t o  Sb+l must be b e t t e r  than the  branch from 

s$ t o  sg+l. 

The only d i f fe rence  between conditions MF2 and F2 i s  t h a t  t he  

l a t t e r  is  quantized. 

t o  be a quantized version of t h i s  modified Fano algorithm. 

observation c a r r i e s  over t o  t h e  searching of  nodes o f f  t he  f i n a l  path 

as well. 

resolved i n  a d e f i n i t e  manner i n  MF2 while they a r e  l e f t  a r b i t r a r y  i n  

252. Therefore, except f o r  t h e  e f f e c t  of t i e s ,  t h e  modified Fano 

algorithm and the  Zigangirov-Jelinek algorithm s e l e c t  t h e  same path.  

The search pa t te rns  f o r  non-final nodes a l s o  agree,  except f o r  

d i f fe rences  due t o  t ies .  

is  an algorithm of t h e  kind we sought i n  our remarks a t  t he  beginning 

of t he  sec t ion .  

Therefore the  Fano algorithm may by considered 

This 

In addi t ion,  MF2 and 252 d i f f e r  only i n  t h a t  t i es  a r e  

Therefore t h i s  unquantized Fano algorithm 

Although it was simple t o  count t he  number of looks and moves 

during a trunk search (Lemma 2) ,  t h e  problem is  much more complex when 

trees a r e  being searched. 

node si on the  cor rec t  path,  we must f ind  t h e  number of d i s t i n c t  

To count t he  number of F looks, say, a t  a 

values grea te r  than min V ( s ? )  assumed by t h e  Uid) along every path 
dSjSL 

emanating from sa. The threshold w i l l  be lowered a t  o r  before s;Z once 
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for each of these values, and each such lowering will contribute some 

F looks along various branches. 

omit discussion of the problem in general, but we will consider a 

special case and compare the computation of the modified algorithm to 

that of the conventional Fano algorithm in this case. 

Because of the complexity, we will 

Suppose the branch metrics assume values in a finite set of 

integers, and furthermore that all the values are integer multiples 

of the one of least absolute value; that is, the admissible metric 

values are (r, nlr, n2r, 

(positive or negative). 

every node value has the form V = kr, k an integer. 

A = Irl . 
drawn for the Fano algorithm (i.e., in increments of A )  and the same 

tree with contours drawn for the modified Fano algorithm (i.e., at 

exact node values) is that some contours may appear in the former 

, nNr) where r and all the ni are integers 

As a consequence of this choice of metrics, 

Suppose we choose 

Then the only difference between a metric tree with contours 

which do not appear in the latter, namely those arising in situations 

as in Figure 20a. Consequently the number of F looks made by the 

unquantized algorithm is no greater than the number made by the Fano 

algorithm, the only differences being attributable to.one of the 

following reasons: 

(1) Reduction of T by A does not allow escape from 
a contour (as in Figure 20a). 

(2) Reduction of T by A allows a B move, but no new 
F move. The Fano decoder, after reducing T, makes 
all possible forward moves before attempting the 
B move, while the modified decoder makes the B move 
immediately. 

(3) A block near the origin occurs so that T must be 
lowered at the origin. 
h repeatedly until T i s  low-enougR;’ Hfiile the 
unquantized decoder lowers it enough the first time. 

The Fano decoder lowers by 
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Note: If r > 0 and a l l  n i  < 0, so t h a t  r is  the  only pos i t i ve  

metric,  (1) cannot occur. If i n  addi t ion,  when T is  lowered t o  the  

back node value i n  the  modified algorithm, control  passes t o  LOOK 

FORWARD ON BEST BRANCH r a t h e r  than t o  MOVE BACK, t h e  differences i n  

computation counts due t o  (2)  w i l l  disappear.  Thus we can make the  

two algorithms almost equivalent i n  number of computations, being 

forced t o  accept differences only due t o  ( 3 ) .  

l e s s  of what measure of computation we choose. 

- 

This appl ies  regard- 

The supe r io r i ty  of t he  new algorithm over the  conventional one 

In p a r t i c u l a r ,  t h e  seen above does not extend t o  the  general case.  

choice of A given i s  a poor one from the  computational viewpoint. 

i s  possible  t o  choose a l a rge r  A which usua l ly  r e s u l t s  i n  many fewer 

computations with a negl ig ib le  degradation i n  e r r o r  probabi l i ty .  

Chapter I11 f o r  fu r the r  discussion. 

I t  

See 

Final ly ,  w e  wish t o  show t h a t  the  tes t  "V = T?" before an F move 

Consider i s  a s u f f i c i e n t  t e s t  f o r  t h e  need t o  t i gh ten  t h e  threshold.  

the  f irst  move t o  s j + l  along the  trunk of Figure 24, and assume t h e  

t e s t  works properly up t o  s j .  

If V j + l  = V j ,  then the  first move t o  s j + l  follows immediately. 

T = V j ,  the  threshold w i l l  be t ightened a t  s ~ + ~ .  

s e t  t o  V j + l  and t h e  decoder moves back u n t i l  T is  reduced t o  K .  

F searching begins and the  first move t o  sj+l is  made with T = V j + l .  

In t h i s  case, the  tes t  'V = T?" fa i ls  a t  s .  j u s t  before the  move t o  
J 

S j + l ,  but there  i s  no need t o  t i gh ten  the  threshold.  Therefore, i f  

the  t e s t  works up t o  s 

decoder i s  s t a r t e d  a t  the  o r ig in  with T = V = 0, i f  V 1  2 0 th? tes t  

ind ica tes  t h a t  T must be t ightened,  and i f  V i  < 0 ,  T i s  reduced t o  V i  

Then a f t e r  t h e  first move t o  s T = V j .  

Since 

j '  
> 

If V j + l  < V j ,  K i s  

Then 

then it works up t o  s ~ + ~ .  Now s ince  the  
j 



and t h e  first move t o  

move t o  s i ,  and hence 

64 
s1 is made. 

by induction, the  tes t  i s  s u i t a b l e  f o r  trunk 

Thus the  test  works f o r  t h e  f irst  

searching. 

Figure 29 i s  equivalent t o  Figure 22. 

a l imi t ing  case (as A + 0) of the  t e s t  "V < T+A?" i n  Figure 9. 

By Lemma 3 ,  t he  ana lys i s  extends t o  t r e e  searching, and so  

Note t h a t  t he  t e s t  "V = T?" i s  
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I [ON BEST BRANCH { INEXT BEST BRANCH1 

FIGURE 29. Unquantized Fano Sequential Decoding Algorithm with 
Alternative Threshold-tightening Test. 



CHAPTER I11 

EXPERIMENTAL COMPARISON OF 
SEQUENTIAL DECODING ALGORITHMS 

The Zigangirov-Jelinek, Jelinek, and unquantized Fano algorithms 

were programmed fo r  the UNIVAC 1107 computer at the University of 

Notre Dame Computing Center. 

with existing programs for the Fano decoder and for simulating channel 

disturbances to study the performance of the various decoding systems. 

In this chapter we review the results of this study. 

These programs were used in conjunction 

All the results to be presented were obtained using a rate + 
non-systematic convolutional code of memory 35 constructed by 

This code has a number of important and useful pro- Cost el l o  

perties, one of  which is large free distance, which makes it well- 

suited to sequential decoding. 

data, no decoding error was made with this code, although in several 

very noisy frames, the computation became prohibitive, and decoding 

was discontinued, the frames being counted as erasures. The generator 

polynomials for the code (in octal form) are: 

. E161 

In all the frames run in obtaining the 

G(l) = 533533676737 

G(*) = 733533676737 

66 
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Runs were made on the binary symmetric channel at three noise 

levels and on the binaryainput Gaussian noise channel with three-bit 

(eight-level) output quantization [see Figure 3 0 ) .  Some parameters 

of interest for the channels used are given in Table 1. In Table 1, 

P is the solution of R = R = 4, .and Rcomp = R1. P 

TABLE 1 

Channel Rcomp R’RcomD P 

BSC, p=.O33 0.5593 0.89 1.354 
BSC, p=.O45 0.4996 1.00 0.998 
BSC, p=.O57 0,4504 1.10 0.729 
Gauss 1 an 0.4913 1.02 0.944 

Branch values are computed by adding the values for the two 

digits on the branch. The digit values are determined by comparing 

the code symbols with the corresponding received symbol. The digit 

metrics are listed in Table 2. 

log Pr(r  1.’ + B 

The values correspond to the terms 

in equation (I-1), rounded to integer values. 
f Cr) 

TABLE 2 

Binary Symmetric Channel 
~~ - 

P Code Symbol 
~ ~~ -~ 

Received Symbol 
0 1 

0.033 

0.045 

0.057 

0 
1 
0 
1 
0 
1 

2 - 18 
2 - 16 
4 
-35 

-18 
2 

- 16 
2 

- 35 
4 

Gaussian Channel 

Code Symbol Received Symbol 
0 1  2 3 4 5 6  7 

Q 4 4 2  0 -8 -20 -34 -58 
1 -58 -34 -20 -8 0 2 4 4  
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0 0 0 0 0 0 

1 1 1 1 1 1 
.96? .955 .943 

- .ill 

1 

FIGURE 30. Channels Used in the Simulations: (a) Binary Symmetric 
Channels; (b) 3 - b i t  quantized Gaussian Channel. 
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I t  was assumed throughout t h a t  t he  a l l - ze ro  sequence was t r ans -  

mitted.  This assumption e n t a i l s  no lo s s  of genera l i ty ,  but it o f f e r s  

t he  decoders an un fa i r  advantage of the  0 branch i s  prefer red  i n  case 

of t i e s .  Therefore, a l l  decoders were biased t o  cooose the  1 branch 

i n  case of t i e s .  Thus decoding i s  ac tua l ly  somewhat more d i f f i c u l t  

than we would expect f o r  a random information sequence. 

Computation Time f o r  t he  Zigangirov-Jelinek Algorithm As pointed 

out i n  sec t ion  II-B, the  necess i ty  f o r  a s tack search renders the  

Zigangirov-Jelinek computation time unacceptable,  espec ia l ly  s ince  t h e  

time increases  f a s t e r  than l i n e a r l y  with the  number of computations. 

Figure 31 exh ib i t s  t h e  behavior of computing time with number of 

computations. Each poin t  on t h e  graph represents  average time and 

computation count f o r  several  frames whose computation counts f a l l  i n  

a spec i f ied  range. 

frames included i n  the  average. 

p = .045. 

The da ta  poin ts  are labe l led  with the  number of 

These da ta  were taken on the  BSC w i t h  

Optimum Bin Spacing and Threshold Increment Extensive work with 

the  Fano decoder* has indicated t h a t  t he  bes t  choice f o r  A f o r  rate % 

binary codes is  a value equal t o  the  magnitude of the  branch metr ic  f o r  

a branch having a s ing le  discrepancy. This i s  i n  agreement with an 

i n t u i t i v e  f ee l ing  t h a t  t he  decoder should be allowed t o  sk ip  quickly 

over s ing le  e r r o r s  and undertake extensive searches only i n  regions of 

severe noise .  Single-error  branches have values -16, -14, and -31 on 

the  th ree  BSCs, and the  decoder program requi res  A t o  be a power of 2 ,  

s o  A of 16, 16, and 32, respec t ive ly ,  were used i n  the  runs on the  BSC. 

* This work i s  beyond the  scope of the  present  repor t ,  bu t  some 
r e s u l t s  a r e  given by Costel lo  [161. 
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FIGURE 31. Variation of Computing Time with Number of Computations 
for the Zigangirov-Selinek Algorithm. 
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For  the Gaussian channel, "single errors"  are not well-defined, but 

since digit metrics are roughly double those used on the first two 

BSCs, h = 32 was used. 

In an effort to determine empirically the optimum bin spacing for 

the Jelinek algorithm, runs were made with 11 = 4,8,16, and 32 on the 

BSC with p = .033 and p = .045. (The Jelinek program requires H to 

be a power of 2 and to be at least as large as the value of  a branch 

which agrees with the received sequence in both digits. See Appendix B 

f o r  details.) 

tations in 100-frame samples at two noise levels. Figure 32 shows the 

distribution of computation f o r  H = 4,8, and 16 at p = .045. 

Figure 33 the distribution of computation is plotted for H = 8,16, and 

32 on the Gaussian channel. On the basis of these results we conclude 

that H = 4 is the optimum choice for the first two BSCs and H = 8 for 

the third BSC and the Gaussian channel. These values were used in the 

remaining runs. 

Table 3 gives average values of  the number of compu- 

In 

TABLE 3 

P H Average Computation 

0.033 4 353.9 
8 354.3 

16 360.2 
32 411.8 

0.045 4 469 .O 
8 471.1 
16 517.6 
32 607.3 

Distribution of Computation for the Jelinek Algorithm As we saw 

previously, the computation C required to decode a digit is a random 
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variable whose distribution (asymptqtically] has the form: 

where p is the solution of R = R, = EoCp)/p. 

35 (Gaussian channel) are plotted the observed distributions of the 

average computation per digit, that is, the total computation done in 

decoding a frame divided by the frame length. 

this random variable differs from that of C, but as we noted in 

Chapter I, the distributions have the same form over a range of N. 

Since Figures 34 and 35 are plotted on log-log scale, the curves tend 

in this range to straight lines whose slopes are the negatives of the 

values of p given in Table 1. 

dashed lines in Figures 34 and 35. 

In Figures 34 (BSC) and 

The distribution of 

These asymptotes are displayed as 

Comparison of Jelinek and Fano Computing Time We will define a 

computation for the Fano algorithm to be an entry of either of the 

LOOK FORWARD boxes of Figure 9,  and a Jelinek computation to be a 

execution of setp (1) of the algorithm. 

repeated visits by the Fano decoder, it always requires more com- 

putation to decode a frame than does the Jelinek decoder, so on that 

basis alone, the Jelinek decoder is superior, However, Jelinek corn- 

putations are inherently more complicated than Fano computations, since 

Because of the need for 

with each node examined, the decoder must store enough information to 

determine the path back to the origin and to resume searching forward 

from that node, if necessary. The Fano algorithm, on the other hand, 

since it only moves from a node to an adjacent node, can easily m 

tain this informatian as it proceeds through the tree. 

is, therefore, whether the additional complexity of the Jefinek co 

The question 
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w t a t i o n  i s  o f f s e t  by the  smaller number of  computations required f o r  

decoding. 

An added complication precludes a simple answer t o  t h i s  quest ion.  

The number o f  "forward looks" the  Fano decoder must perform grows 

f a s t e r  than l i n e a r l y  with the  number o f  nodes examined; t h a t  i s ,  t h e  

r a t i o  o f  Fano computations t o  Je l inek  computations i s  not  cons tan t ,  bu t  

increases  as the  number o f  Je l inek  computations i s  increased, because 

of the  repeated searches by the  Fano decoder. 

t h a t ,  f o r  r e l a t i v e l y  qu ie t  frames the  Fano decoder i s  super ior ,  while 

f o r  n o i s i e r  frames t h e  Je l inek  decoder i s  super ior .  This i s ,  i n  fac t ,  

t h e  behavior which was observed i n  t h e  simulations.  

I t  i s  therefore  poss ib le  

We choose as a measure o f  decoding e f f o r t  t h e  time t o  decode a 

frame. 

of computations, t h e  d i s t r i b u t i o n  of  computing time has t h e  same shape 

as the  d i s t r i b u t i o n  of  computation, 

simulation i s  p l o t t e d  i n  Figures 36 (BSC) and 37 (Gaussian channel). 

Since the  time required i s  roughly proport ional  t o  the  number 

The behavior observed i n  t h e  

The reader  i s  cautioned against  a t t r i b u t i n g  too  much s igni f icance  

t o  the  pos i t i on  of  t h e  crossover poin t  i n  Figures 36 and 37 ,  s ince  it 

depends s t rongly  on t h e  r e l a t i v e  complexity of t h e  two kinds of  com- 

puta t ions ,  and may a l t e r e d  by d i f fe rences  i n  ava i l ab le  hardware o r  

programming technique. 

Je l inek  decoder i s  a t  least  competitive with t h e  Fano decoder, and i s  

fas ter  except on f a i r l y  qu ie t  frames. 

less l i k e l y  a r e  qu ie t  frames, and hence the  more l i k e l y  i s  the  Je l inek  

decoder t o  be the  faster of t h e  two. 

What can sa fe ly  be concluded is t h a t  t h e  

The n o i s i e r  t h e  channel, t h e  

Average Computing Time as a Function of  Erasure Probabi l i ty  We 

have seen t h a t  t h e  random var iab le  T,  t he  time t o  decode a frame, 
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exhib i t s  a Pareto d i s t r i b u t i o n  fo r  s u f f i c i e n t l y  la rge  values of the  

d i s t r i b u t i o n  parameter. In any r e a l ,  on- l ine communication system, 

only a f i n i t e  amount of time can be allowed f o r  decoding each frame, 

and any frame not completely decoded i n  the  a l l o t t e d  time must be con- 

s idered an erasure.  If tmax is  t h e  maximum allowable t i m e  p e r  frame, 

then Pr{T > tmaxl i s  the  erasure probabi l i ty .  Conversely, i f  a 

t o l e rab le  erasure p robab i l i t y  QE is prescr ibed,  then the  maximum time 

tmax which should be designed i n t o  the  system can be found by solving 

Pr{T > tmaxI = QE. 

With the  maximum time f ixed,  we have a new random var iab le  T* 

derived from T a s  follows: i f  T = t ,  then T* = min{t,tmax). The 

average of T* provides a convenient measure of t he  performance of t h e  

system, and we now inves t iga t e  the  behavior of  T* as a function of QE. 

Suppose we have 

( K  t -@, t 2 tp 

where a l l  t h a t  i s  known about f ( . )  i s  t h a t  it i s  monotone non-increasing, 

t h a t  f ( t )  = 1 f o r  a l l  t I t o ,  and t h a t  f ( t p )  = K t p - P .  (See Figure 3 8 . )  

Assume t h a t  QE i s  chosen small enough t h a t  t h e  so lu t ion  of 

Pr{T > t l  = QE, tmax, i s  grea te r  than t p .  Then QE = K(tmax)-”, o r  

For a given QE t he  d i s t r i b u t i o n  o f  T” is  given by: 

d .  The dens i ty  function of T i s  pT(t)  = -Jr{T > t l ,  Or 
d t  
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be given by: 

Then the  densi ty  funct ion of T* i s :  

Therefore the  average value of T* i s  given by: 

= [tapT*(t) d t  

- - - / ; g ( t )  d t  d t  + /;t.,.x,-p-l d t  + QEtmax 

t 0  

t P  

Now 

Hence for p # 1, 

Using ( l ) ,  we obtain 

For p = 1, tmax a K/QE, so T” = C2 -. X In QE. Therefore, 
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From this form we can see the behavior of  

f o r  three ranges of p are displayed in Figure 39. Note that for p > 1, 

the average of T exists, and so T” approaches a finite limit, namely T. 
But for p 5 1, 

bound as QE is made to decrease. 

as In QE varies; plots 

fails to exist and the average of T* grows without 

Experimental observations of the behavior of as QE is varied 

are presented in Figure 40. 

distribution of T differ for the two algorithms, the effective value 

of K is different. 

linearly as log QE decreases, the slopes and intercepts are different, 

showing that the initial superiority of the Fano algorithm quickly 

disappears, and the Jelinek algorithm becomes the better, its advantage 

growing rapidly as Q 

the Jelinek algorithm offers considerable practical advantage. 

however, that for the low noise case, p = .033 (R = .9RcOw), the 

advantage goes to the Fano algorithm. 

channel, the more favorably does the Jelinek algorithm perform relative 

to the Fano algorithm. 

Since the non-asymptotic parts of the 

Hence in Figure 42B, while both averages increase 

is decreased. Thus in the vicinity of Rcomp, E 
Note, 

In general, the noisier the 
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CHAPTER I V  

APPLICATIONS OF SEQUENTIAL SEARCH ALGORITHMS 
TO GRAPH-SEARCHING PROBLEMS 

Unti l  now we have focused on sequent ia l  decoding as a means of 

f inding a near-optimum path through a value t r e e .  In t h i s  chapter we 

consider t he  problem of  f inding good paths through more general  graphs 

i n  which each branch i s  assigned a value,  and we consider how the  

sequent ia l  decoding algorithms w e  have discussed can be applied t o  

t h i s  t a s k .  We s h a l l  he rea f t e r  refer t o  these  procedures as sequent ia l  

search algorithms r a t h e r  than sequent ia l  decoding algorithms. 

The graphs we w i l l  be deal ing with i n  t h i s  chapter w i l l  exh ib i t  

the  following s i x  p rope r t i e s :  

G 1 :  The graph cons i s t s  of  a f i n i t e  number of  nodes 
and branches. 

G2: The graph is  d i rec ted ;  t h a t  i s ,  every branch b 
between two nodes s and s '  i s  assigned a d i r ec t ion ,  
say from s t o  s ' .  
emanate f r o m s  and terminate a t  s r ;  s '  i s  ca l l ed  
t h e  successor o f  s along b ,  and s i s  ca l l ed  the  
predecessor of s '  along b.  

There i s  exac t ly  one node so, ca l l ed  the  or ig in  
node, which has no predecessor. 

In t h i s  case,  b i s  s a i d  t o  - 

G3: 

G4: There i s  exac t ly  one node sF,  ca l l ed  the  f ina l  
node, which has no successor.  

89 
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G5 : 

G6 : 

Conditions G 3  

The graph i s  connected i n  the  sense t h a t  f o r  any 
node s i n  t he  graph, s#so, t he re  i s  a t  least one 
path from so t o  s ,  and for any node s ,  S # S F ~  t he re  
i s  a t  least one path from s t o  sF. In p a r t i c u l a r ,  
t he re  i s  a t  least one path from S O  t o  sF, provided 
t h a t  SO#SF. 
means a sequence of branches b l ,  b2, -.., bN such 
t h a t  b l  emanates from s,  bN terminates a t  s ' ,  and 
bi emanates from the  node at which b i - 1  terminates ,  

(Here t h e  term "path from s t o  s '  '' 

i = 2 ,  3 ,  - a *  Y N .  
* 

There are no closed pa ths .  

and G4 may seem unreasonably r e s t r i c t i v e ,  but  for  

graphs having severa l  s t a r t i n g  and ending nodes, we could think of 

adjoining two addi t iona l  nodes SO and sF and placing a branch of zero 

value from so . to  each s t a r t i n g  node, and from each f i n a l  node t o  SF. 

The r e s u l t i n g  graph s a t i s f i e s  G3 and G4, and is  equivalent t o  the  

o r ig ina l  graph f o r  present  purposes. 

Given a graph s a t i s f y i n g  these  s i x  condi t ions,  suppose t h a t  each 

branch is assigned a r e a l  number ca l l ed  the  branch value.  

assoc ia ted  with a path i s  the  sum of the  values of the  branches 

comprising the  path.  

set of  a l l  paths  from SO t o  SF t h e  path of g rea t e s t  value.  

The value 

Our problem w i l l  be t o  s e l e c t  from among the  

4.  A.  OPTIMUM GRAPH SEARCHING 

The problem o f  f ind ing  an optimum path through a graph has been 

s tudied by many inves t iga to r s  and severa l  algorithms have been pro- 

posed. See, for example, Dantzig["], Busacker and Saaty'l'', Pollack 

and Wiebenson [ l g l .  (In t h e  references c i t e d ,  the  term "path length" i s  

used t o  mean what we have ca l l ed  "path value," while we have used t he  

* If such a closed path has negative gain,  it i s  p a r t  of no 
optimum path,  and i f  it has pos i t i ve  gain,  t he re  is  no optimum path (of 
f i n i t e  length) ,  so  no cases of i n t e r e s t  have beenTxcluded by G6. 
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term "length" t o  mean the  number of branches i n  the  path.)  

Under c e r t a i n  condi t ions,  the  optimum path can be found by the 

procedure ca l l ed  "dynamic programming" by Bellman~201 . 
discussed i n  Chapter I admit a dynamic programming search,  and as 

Omura[*'] has noted, t h e  Viterbi[**] algorithm f o r  decoding con- 

volut ional  codes i s  p rec i se ly  the  dynamic programming search of  an 

appropriate metr ic  t r e l l i s .  

The t r e l l i s e s  

The algorithms referenced above provide a general  so lu t ion  t o  

the problem of f ind ing  and evaluat ing the optimum path through a graph 

sa t i s fy ing  G1-G6. 

f a i r l y  l a rge  and complex graphs, the  amount of  computation required 

becomed in to l e rab le .  

which a r e  e s s e n t i a l l y  modifications of  t he  sequent ia l  decoding pro- 

cedures we have seen can be used t o  search graphs of the  kind w e  a r e  

considering and s e l e c t  a path with l e s s  e f f o r t ,  a t  t he  p r i c e  of  some 

s a c r i f i c e  of opt imal i ty .  

The d i f f i c u l t y  with t h i s  approach i s  t h a t  f o r  

In  the next sec t ion ,  we suggest how procedures 

4. B. SUBOPTIMUM GRAPH SEARCHING--SEQUENTIAL SEARCHING 

A t r e e  of f i n i t e  length can be made t o  s a t i s f y  conditions Gl-G6 

by adjoining an addi t iona l  f i n a l  node sF and severa l  zero-value 

branches, as discussed on page 90. We w i l l  then say t h a t  the  tree 

has been terminated. I t  is  c l e a r  that an algorithm which searches 

any graph s a t i s f y i n g  G1-G6 can a l so  search a terminated t r e e .  The 

converse, however, i s  not  evident .  Our f irst  t a sk ,  therefore ,  w i l l  be 

t o  see how the  sequent ia l  search algorithms, which we have here tofore  

considered as t ree-search algorithms, can be used on any graph i n  the  

c l a s s  of graphs s a t i s f y i n g  conditions Gl-G6. 
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4. B. 1. The Path Tree of a Graph 

Given a graph Sa t i s fy ing  G1&6, the  s e t  of  a l l  paths  from so t o  

SF has a na tura l  tree s t ruc tu re .  

path tree of t he  graph, can be described a s  follows: 

and P2 from so t o  sF of respect ive lengths L 1  and L2 which have i n  

common t h e  f irst  k l  branches, then diverge,  t o  remerge again a t  some 

node and share t h e  l a s t  k2 branches t o  sF, t he re  a re  two paths i n  t h e  

path tree which coincide i n  the  first k l  branches, then diverge and 

remain separate  t o  t h e  end of t h e  tree.  In t h e  path t ree  there  are 

two nodes represent ing the  path node a t  which P1 and P2 remerge, and 

t h e  port ions of  t h e  tree from these two nodes t o  t h e  end of t h e  tree 

a re  iden t i ca l .  

represent  a given graph node as the re  a re  paths i n  the  graph from so 

t o  t h a t  node. 

t r e e  of Figure 41b. 

the  path t r e e  o f  t h e  t r e l l i s  of  Figure 4 .  

This tree, which we s h a l l  cal l  t h e  

For two paths  P1 

Thus i n  t h e  path t ree  there  a r e  as many nodes which 

As an example, t he  graph of Figure 41a has the  path 

As another example, t he  code t r e e  of Figure 3 i s  

The path trees we obtain i n  t h i s  way do not i n  general have t h e  

property t h a t  every non-final node has the  same number of successors,  

nor do a l l  paths  through the  t r e e  have the  same length.  However, t h e  

sequent ia l  search algorithms a re  s t i l l  appl icable ,  provided t h a t  t h e  

searcher can r e a l i z e  when it i s  a t  t h e  end of a path.  

can define the  ac t ion  of a sequent ia l  search algorithm on a graph t o  

be the  ac t ion  of t h e  algorithm when applied t o  t h e  graph's pa%% tree. 

Therefore we 

This a t  least s e t t l e s  t h e  problem of what it means t o  search a 

graph using the  Fano OT Zigangirov-Jelinek algorithm, but it would be 

unsa t i s fac tory  if we had t o  ac tua l ly  construct  t h e  path t r e e  before 

performing the  search. This i s  not necessary if c e r t a i n  facts are 
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noted about the algprithm$, 

For t h e  Fana a l g o r i t h ,  suppcrse t h e  s-earcher i s  allowed t~ keep 

(This is t rack  of  t h e  path it has f s l l swed  t o  its present  pos i t ion .  

easy t o  do, and is  always done i n  p rac t i ce . )  

t he  in s t ruc t ion  "LOOK BACKI' t a  mean "Look back along the  f a s t  branch 

of t h e  present path," thus resolving t h e  ambiguity of t h a t  i n s t ruc t ion .  

In addi t ion,  s ince  node values are computed by adding branch values t o  

an accumulated sum V, i t  i s  c l e a r  t h a t  these node values a re  ac tua l ly  

path values,  and t h a t  i f  the  searcher encounters a node twice from 

along d i f f e r e n t  paths ,  d i f f e ren t  values ( in  general)  w i l l  r e s u l t .  

Final ly ,  the  "FIRST VISIT ?Ic t e s t  should be in te rpre ted  as a t es t  for  

f irst  v i s i t  along the  present  path; i n  view of t h e  above remarks on 

node values,  it can be seen t h a t  Gal lager 's  t e s t  (Figure 9) i s  such a 

tes t .  

t h e  graph exact ly  as  i f  it were searching t h e  associated path t r e e .  

Consequently the  path t h e  algorithm w i l l  s e l e c t  i s  the  path it would 

s e l e c t  when searching t h e  path t r e e ,  namely, t h e  one which satisfies 

F 1  and F2, 

them s l i g h t l y ,  s ince  it i s  no longer poss ib le  t o  specify a path by 

enumerating the  nodes along t h e  path--we must l i s t  t h e  branches com- 

p r i s ing  t h e  path.)  

Then we can i n t e r p r e t  

We can then conclude t h a t  t he  Fano algorithm w i l l  search through 

(When applying F 1  and F2 t o  graphs, w e  are obliged t o  a l t e r  

Now, turning t o  t h e  Zigangirov-Jelinek algorithm, we 3ee that t h e  

first d i f f i c u l t y  does not a r i s e  s ince  t h i s  algorithm only moves forward. 

However, s ince  a node may be the successor of more than one node, it i s  

possible  t h a t  one,of t h e  successors of t h e  top node on t h e  s tack is  

already on the  s tack because a i  an e a r l i e r  extension. 

t he  twa appearances of t h e  node represent  d i f f e r e n t  paths  ( tha t  is, 

IR t h i s  c 
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d i f f e r e n t  nodes i n  t h e  path t r e e )  and i n  general  d i f f e r e n t  values .  

If t h e  searcher  is  allowed t o  have such mul t ip le  occurrences of graph 

nodes i n  the  s tack ,  then it w i l l  search t h e  graph j u s t  as i f  it were 

searching t h e  path tree,  and hence i t  w i l l  s e l e c t  a path sa t i s fy ing  

ZJ1 and 252 (when these  r u l e s  a re  rephrased as noted before) .  

Making t h e  analogous argument f o r  t h e  Je l inek  and unquantized 

Fano algorithms, we can see t h a t  applying them t o  graphs y i e l d s  paths 

s a t i s f y i n g  the  corresponding condi t ions.  

Inc identa l ly ,  these  observations show t h a t  it i s  immaterial 

whether we consider sequent ia l  decoding of  convolutional codes as a 

t r e e  search operat ion o r  a t r e l l i s  search operat ion.  

4 .  B .  2 .  Using Remergers t o  Improve Performance 

The previous discussion has shown t h a t  our sequent ia l  search 

algorithms can be appl ied t o  graphs with meaningful r e s u l t s ,  s ince  t h e  

algorithms w i l l  search the graphs as i f  they were searching t h e  

assoc ia ted  path t r e e .  

from d i f f e r e n t  pa ths ,  i t  does not r ea l i ze  t h a t  t h e  node has been 

v i s i t e d  before .  The question na tu ra l ly  arises whether, i f  t h e  searcher  

were ab le  t o  recognize r e v i s i t s  along new pa ths ,  it could use the  

information t o  be somewhat more s e l e c t i v e  i n  searching. 

t o  avoid searching p a r t s  of  t he  path t r e e  i f  it i s  known i n  advance 

t h a t  t he  search w i l l  be f u t i l e .  

If t h e  searcher  encounters t he  same node twice 

We woule l i k e  

For  s impl ic i ty ,  we consider only t h e  unquantized algorithms. As 

an immediate consequence o f  VFl and MF2 w e  may s t a t e :  

LEMMA: If b f ,  b2, . - . ,  bE i s  the  path from so t o  sF se l ec t ed  by t h e  

unquantized Fano searcher ,  and Sk i s  t h e  node a t  which b t  
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terminates , then b{+l , bCc2 

s e l e c t  i f  it were s t a r t e d  a t  node Sk and constrained not t o  move 

backward from node Sk. 

m e * ,  b t  i s  the  path t h e  searcher  would 

If we assume t h a t  t i e s  are resolved i n  a cons is ten t  manner, then 

an analogous statement can be made about t he  Zigangirov-Jelinek 

searcher .  

Now l e t  s be a node i n  the  graph and l e t  51, b-2, . - . ,  E% be the  

branches along t h e  path the  searcher  would s e l e c t  i f  s t a r t e d  as s and 

prevented from moving back from s .  

b& be two d i f f e ren t  paths  from so t o  s such t h a t  b .  # 

and bi = b i  f o r  i < j . (See Figure 42 .) 

... Let bly b2 ,  - * - , b n  and b i ,  b;, , 

b! , bn # b;, J J 

n m 

i= 1 i=l 
Let V ( s )  = 1 v(bi) and V 1 ( s )  = 1 v ( b j ) ,  where the  quan t i t i e s  

v(bi) and v (b j )  a r e  t h e  branch values;  thus V ( s )  and V '  ( s )  a re  the  

values a t  node s along t h e  unprimed and primed pa ths ,  respec t ive ly .  

THEOREM 9: If t h e  unquantized Fano searcher  moves t o  s along t h e  

unprimed path and V(s) > V ' ( s ) ,  then t h e  primed path 

b;, b;, " ' ,b '  i s  not t he  i n i t i a l  segemnt of t h e  path 

se 1 e c t  ed . 
m 

Proof: If the  searcher  never moves t o  s along the  primed pa th ,  

t he  claim i s  obvious. 

o f  t he  se l ec t ed  path,  t he  claim i s  again obvious. 

If bl ,  b2, . . - ,  b j -1  i s  not t h e  i n i t i a l  segment 

Hence assume t h a t  

. . .  node s1 i n  Figure 42 i s  on the  f i n a l  pa th ,  t h a t  b l ,  b2,  9 b j -1  i s  

the  f i r s t  segment o f  t h a t  path,  and t h a t  t h e  searcher  eventual ly  

reaches s along both t h e  primed and unprimed paths .  

i f  V i i n  denotes t h e  minimum value seen along the  f i n a l  path from si t o  

Then by Theorem 8 ,  
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FIGURE 42. Diverging and Remerging Paths  Through a Graph. 
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SF, we have 

k 
min 1 v(bi) 2 V&, 

j - lzkzn i=l 

> 
k 

min 1 v(b i )  = V$in 
< <  j-l,k,m i=l 

where i f  equa l i ty  holds i n  (S),  then b j  must be  b e t t e r  than t h e  j t h  

branch of  t he  se l ec t ed  path,  o r  e l se  it must be t h e  j t h  branch of t h e  

se lec ted  path,  and s imi l a r ly  f o r  equa l i ty  i n  (6).  

- 

Let us c a l l  t h e  path b j ,  b j+ l ,  . . .  , bn, Fl, * . . ,  FN simply P ,  

Suppose t h a t  and t h e  o ther  path b!, b '  

the  minimum node value along P is  assumed a t  o r  pas t  s ;  t h a t  i s ,  

, ..., b',Kl2 - e - ,  bNy P I .  
I j + l  n 

k 

i= 1 
min along P = V ( s )  + 1 v(Ei) f o r  some k I 0 

Then s ince  V ( s )  > V ( s )  , 

k 

i=l 
min along P 2 v ~ ( s )  + 1 V C F ~ )  

2 min along P '  

H v  t h e  lemma, i f  b;, b;+l, ' * ' ,  b '  were p a r t  of t h e  f i n a l  path,  m 

then P I  would be the  f i n a l  path from s1 t o  S F .  But s ince  the  minimum 

along P exceeds t h a t  along P ' ,  P ;  does not s a t i s f y  MF2. Hence the  

primed path i s  not  p a r t  of t he  f i n a l  path.  

Now suppose t h a t  t he  minimum along P i s  assumed between s1 and s .  

Then 

k 
min along P = min 1 v(bi) 

j - lzksn  i=l 
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Hence by [SI, 

min along P 2 V;in (71 

But Viin i s  t h e  g rea t e s t  such minimum, so  equa l i ty  must hold i n  ( 7 ) .  

Now i f  P i s  not a c t u a l l y  the  last segment of t he  f i n a l  path.  it i s  

because there  i s  another path of  minimum value V i i n  whose first 

branch a f t e r  s 1  i s  ordered b e t t e r  than b 

would never be reached along the  unprimed path,  cont rad ic t ing  the  

assumption. 

precluding the  appearance of b!, b i+ l ,  ... 
proves t h e  theorem. 

But i f  t h i s  were so, s j. 

Therefore P must be the  last segment of  t he  f i n a l  path,  

b; i n  t h a t  pa th .  This J 

Based on Theorem 9,  we can make some observations about what a 

c lever  unquantized Fano searcher  should do i n  c e r t a i n  circumstances. 

Suppose t h a t  provis ion i s  made f o r  s t o r i n g  a value U ( s )  corresponding 

t o  each node s i n  t he  graph, and t h a t  t h e  searcher  i s  allowed t o  

modify U ( s )  upon each v i s i t  t o  s .  Say t h a t  t he  searcher  a r r i v e s  a t  

node s fo r  the  f i rs t  time with value V.  The searcher  sets U ( s )  = V 

and begins F searching. 

back t o  s, then back from s along t h e  path on which it moved t o  s .  

Now suppose t h a t  l a te r  i n  the  process the  searcher  a r r ives  a t  s again,  

t h i s  t i m e  along a path whose las t  branch i s  not t h e  las t  branch of t h e  

previous path t o  s, and with a d i f f e r e n t  value V f .  If V f  < U ( s ) ,  then 

by Theorem 9, w e  know t h a t  F searching is  f r u i t l e s s ,  s ince  t h e  present  

path t o  s i s  not t he  i n i t i a l  p a r t  o f  t h e  path se lec ted .  Hence t h e  

searcher should j u s t  move back immediately, as i f  t he  threshold would 

have been v io l a t ed  by an F move. 

a r e  avoided. 

Suppose t h a t  t h e  searcher  i s  eventual ly  forced 

This way, some f u t i l e  computations 
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T f  V '  =i U ( s ] ,  although we did not  show it, it can be ve r i f i ed  

t h a t  i n  Theorem 9 ,  i f  V '  (s) = V ( s )  and the  searcher  reaches s along t h e  

unprimed path f irst ,  then the  primed path i s  not p a r t  of  t he  f i n a l  

path.  

V '  < U ( s ) .  

Thus the  searcher  should take the  same ac t ion  as i n  t h e  case 

On t h e  o ther  hand, if VI > U ( s ) ,  we know t h a t  t he  o r ig ina l  path 

t o  s is not t he  i n i t i a l  p a r t  of t he  se l ec t ed  path,  while t he  new path 

t o  s might be. Thus t h e  prescr ibed F searching must be done. In  

addi t ion,  t he  searcher  should s e t  U ( s )  = V I .  

I t  i s  c l e a r  therefore  t h a t  U ( s )  a t  any t i m e  i s  the  g rea t e s t  value 

with which the  searcher  has ever a r r ived  a t  node s on any path up t o  

t h a t  time. With t h i s  i n  mind, we might i n i t i a l i z e  a l l  t h e  U ( s )  t o  -03. 

Then upon each v i s i t  t o  s t h e  searcher  w i l l  compare t h e  cur ren t  value 

V t o  U ( s )  t o  decide whether F searching should be attempted and 

whether U ( s )  should be updated. 

A flowchart of t h i s  Fano graph searcher  i s  given i n  Figure 43.  

Unfortunately, t h e  requirement f o r  a s torage loca t ion  f o r  each node 

examined makes us f o r f e i t  one of t he  p r inc ipa l  advantages of Fano-type 

searches,  namely the  small memory requirements. 

If we a r e  wi l l i ng  t o  make the  assumption t h a t  t i e s  a r e  resolved 

cons is ten t ly  we can prove a theorem analogous t o  Theorem 9 f o r  t he  

Zigangirov-Jelinek algorithm, and make analogous observations about 

expediting the  search. 

t h a t  s t e p  (1) should be replaced by t h e  following procedure: 

The corresponding change i n  the  algorithm is  

( l a )  Compute the  values of a l l  successors of t h e  top 
node and put  i n  the  s tack  any successors which 
have never appeared before.  For the  remaining 
successors:  
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sF: Successor Q f  present nclde along BF 

FIGURE 43.  Ilnquantized Fano Graph Search Algorithm. 
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-?. If the node appeared before but has since been 
deleted,  put  t h e  new node i n  t h e  s tack only i f  
i ts  value i s  grea te r  than i ts  value a t  t he  
previous appearance. 

-- If t h e  node appeared before and remains i n  the  
s tack,  r e a t i n  only the  appearance o f  higher 
value.  

There seems t o  be no simple way t o  implement s t ep  ( l a )  of t he  

algorithm. 

4 .  B .  3 .  Biasing Branch Values 

In our discussion of sequent ia l  decoding i n  Chapter I ,  w e  noted 

t h a t  a b i a s  term was added t o  t h e  branch metrics t o  make the  cor rec t  

path tend t o  increase and incor rec t  paths tend t o  decrease i n  value.  

In order f o r  t h e  sequent ia l  search procedures t o  produce a reasonably 

good path it i s  necessary t o  b i a s  t h e  branch values i n  such a way 

t h a t  t he  path sa t i s fy ing  our s e t s  of conditions does i n  f a c t  have a 

large terminal value.  

Suppose t h a t  a l l  the  branch values a r e  bounded, say m 2 v(b) 2 M 

f o r  a l l  b .  

branch value v(b) - B. 

If w e  choose B I m, then each biased branch value is  non-negative. 

We want t o  replace each branch value v(b) by a biased 

Therefore with regard t o  the  sets of conditions,  a l l  paths  emanating 

from a node s have the  same minimum value,  namely the  value a t  node s .  

Hence the  choice of f i n a l  path is  a r b i t r a r y  with the  Zigangirov-Jelinek 

algorithm and i s  made only on the  bas i s  of comparing s ing le  branch 

values with the  unquantized Fano algorithm. 

reason t o  hope t h a t  t he  path se lec ted  with t h i s  b i a s  i s  a good path.  

There is very l i t t l e  

The process of searching i s  qu i t e  simple, however, requir ing only a 

s ing le  computation pe r  branch. 
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A t  the o ther  extreme, taking B B M, each branch value is  non- 

pos i t i ve  so  t h a t  every path assumes i ts  minimum a t  t he  end of t h e  

path,  i * e . ,  a t  SF, For a path b l r  b2, bL t h e  biased value is 

L 
1 v ( b i )  - LB; 

i=1 
thus a path is  se lec ted  on t h e  bas i s  of a compromise 

between length and value.  As B -+ 00,  t h e  searcher  selects the  sho r t e s t  

path,  and i f  there  i s  more than one, t he  bes t  of them i s  chosen. 

a l l  paths  a re  of t h e  same length, with any B 2 M the  path se lec ted  is 

optimum. 

d i f f i c u l t ,  and f o r  B 2 M ,  v i r t u a l l y  every node i n  the  graph is  

If 

The catch is  t h a t  as B increases ,  searching becomes more 

examined, so  t h a t  t he  sequent ia l  search algorithms o f f e r  no improvement 

over t h e  optimum search algorithms. 

This shows t h a t  t he  choice of b i a s  r e s u l t s  i n  a t radeoff  between 

computational d i f f i c u l t y  and nearness of t he  f i n a l  path t o  opt imal i ty .  

A reasonable value of B must l i e  i n  the  range m < B 

value depends on t h e  p a r t i c u l a r  problem a t  hand and the  leve l  o f  

M, but t h e  exact 

performance demanded. 

4 .  C .  AN EXAMPLE 

Figures 44-47 give an example of graph-searching by means of t he  

unquantized Fano algorithm. 

graph, shown i n  heavy l i n e s  i n  Figure 44 .  

There a r e  two optimum paths  through t h e  

The ac t ion  of t h e  Fano searcher on t h e  unbiased graph is  displayed 

i n  Figure 45.  

search. 

The pa th  chosen i s  not  optimum, but  has a value of -1; the  optimum 

path value 2s zero. 

Nodes which are encircled a re  those v i s i t e d  during t h e  

Arrows along branches ind ica t e  F looks along those branches. 
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When a l l  branch values a r e  biased by I, t h e  Fano searcher s e l e c t s  

one of t h e  optimum paths ,  as shown i n  Figure 46. In t h i s  case,  more 

forward looks a r e  required than before,  but t h e  same number of nodes 

a r e  v i s i t e d .  

When the  b i a s  is  increased t o  2 (Figure 47), the  searcher  

s e l e c t s  the  o the r  optimum path.  

than t h e  previous one, it would be poss ib le  t o  force  i t s  se l ec t ion  

even if it were not optimum. 

O f  course, s ince  t h i s  path is s h o r t e r  
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FIGURE 4 4 .  A Graph with Two Optimum Paths.  

-6 

FIGURE 45. Sequential  Search o f  the  Graph of Figure 44 with Zero Bias. 



105 

FIWRE 46. Sequential Search of the Graph of Figure 44 with Bias = 1. 

FIGURE 47. Sequential Search of thc Graph of Figure 44 with Bias = 2. 



APPENDIX A 

SUMMARY OF THE LOWER-BOUND ARGUMENT 
FOR Pr(C0 h N} 

In this appendix, we give a brief summary of the argument used 

by Jacobs and Berlekampt3], making a minor modification in the 

argument. 

that is, we may have x L y + O(r) , where O(r) -+ 0 as r -+ a. 

case we put x 2 y, and it will be clear from context what quantity is 
growing large. All logarithms (and hence rates) will be taken to the 

Many of the equations and inequalities hold asymptotically; 

In this 

natural base. 

Suppose we have a block code of length n and M = enR codewords. 

A maximum likelihood list-of-N decoder is one which maps the received 

sequence into a list of the N most likely transmitted sequences, given 

the received sequence. A list decoder makes an error if the actual 

transmitted sequence is not on its list. Shannon, Gallager, and 

Berlekamp t231 have shown that the probability of  error with list 

decoding is lower-bounded as follows: 

1 1 
n where @ = ln(M/N) = R - - In M is the list decoding rate and 

106 
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ESP(@) = lub {EO(p)  - &I, EO(p) being given by (1-2) .  
P 2 0  

Now suppose EO(p) i s  convex; if it i s  not ,  it can be replaced by 

i ts  convex h u l l  and the  present analysis  i s  unchanged. 

en t i a t ing  with respect  t o  P, we obtain 

By d i f f e r -  

where p *  i s  t h e  so lu t ion  o f &  = EC)(p). 

l ist s i z e  N.  

Suppose we are  given p and t h e  

I t  is possible  t o  make del E b ( p )  by choosing 

Then E (a EO(p) - p@ 3 E O ( p )  - pEC)(p), a f a c t  which i s  most 

ea s i ly  seen with t h e  a i d  of a graph. 
SP 

Thus by (l), 

Given a t r e e  code o f  r a t e  R with v symbols per  branch, w e  obtain 

a block code of r a t e  R and length n by terminating the  t r e e  after n/v 

branches (assuming f o r  s impl ic i ty  t h a t  n is  a mult iple  of v ) .  

given N,  i f  we choose n t o  be the  l e a s t  mult iple  of v such taat 

For a 

where p is  t h e  so lu t ion  of  R = EO(p) /p,  then (2)  i s  s a t i s f i e d  and so 

(3) holds.  Thus 

where (4) i s  used i n  the  l a s t  s tep .  
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Jacobs and Berlekamp argue as  follows. Suppose a ce r t a in  

sequence is  received. 

sequence a f f e c t  t he  decoder's operation up t o  depth n/v.  

p robabi l i ty  t h a t  N computations a re  performed i s  a t  l e a s t  as  g rea t ,  

by J B 1 ,  as the  p robab i l i t y  t h a t  a t  least N paths through the  tree a r e  

examined t o  depth n/v before t h e  cor rec t  path i s  reached, t h a t  i s ,  t h e  

probabi l i ty  t h a t  t h e  cor rec t  path l i e s  among t h e  last M-N paths  

considered, where M = e-nR. This l a s t  quant i ty  i s  given by the  sum 

over the  l a s t  M-N paths examined of t h e  p robab i l i t y  of receiving the  

given sequence conditioned t h a t  t h a t  path was sen t .  

l e a s t  as  grea t  as Pe(N) f o r  t h i s  received sequence, s ince  Pe(N) is 

obtained by summing t h i s  condi t ional  probabi l i ty  over t h e  M-N paths  f o r  

which it i s  m i n i m u m .  

i s  the  computation t o  decode the  first n/v branches, then 

By JB2,  only t h e  f irst  n d i g i t s  of the  received 

The 

But t h i s  is  a t  

This holds f o r  a l l  received sequences, so  i f  C 

Pr{C 2 N )  2 Pe(N) 2 N'p (5) 

The above argument can be modified t o  y i e l d  a lower bound on t h e  

d i s t r i b u t i o n  of Co, t h e  computation required t o  decode the  first branch, 

r a the r  than a lower bound on C as  given by Jacobs and Berlekamp. 

so lu t ion  i s  t o  t runca te  the  t r e e  code and form a block code i n  such 

a way t h a t  only nodes whose examination is chargeable t o  Co a r e  

included. 

t runca te  the  tree as  before,  but a l s o  prune t h e  p a r t  o f  the  tree 

The 

Suppose the re  a re  u branches emanating from each node. We 

s t a r t i n g  with t h e  first cor rec t  branch, but  leaving i n  the  cor rec t  

path.  See Figure 48. The number of codewords i n  t h i s  block code i s  
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FIGURE 48. The Truncated Tree fo r  Deriving a Lower Bound on P d C O  h N), 
The Set  of MT Codewords i n  the  Truncated Code Consists of 
A l l  Paths Above the  Dashed Line, As Well As t he  Correct 
Path e 
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1 . I n  1 u-1 1 u-1 so  t h a t  % E f f l n  MT = - - I n  u + - I n  = R + - I n  

n v  n n 

Since !+. A R, t h e  sme argument holds;  by excluding a l l  nodes whose 

examination should be charged t o  decoding o ther  branches than t h e  first,  

we have not  a f fec ted  t h e  r a t e  asymptot ical ly ,  so 

Note t h a t  from (4), we must be ab le  t o  choose 

i n  order  t o  der ive  t h e  lower bound on Pr{CO 1, N) , so t h a t  (1-6) holds 

when 

That i s ,  i n  applying t h e  lower bound t o  C o ( L )  f o r  f i n i t e  t r e e s ,  t he  

range of  N for which t h e  bound holds grows exponent ia l ly  with t h e  tree 

length L. 



APPENDIX B 

THE JELINEK DECODER PROGRAM 

We now descr ibe i n  some d e t a i l  t he  operation of t he  Je l inek  

decoder as we have programmed it on t h e  UNIVAC 1107, i n  t he  hope t h a t  

t he  techniques may be of use t o  o ther  inves t iga tors .  

In order t o  extend from a node, t h ree  items must be known: the  

value a t  t he  node, i t s  depth in to  t h e  t r e e ,  and the  encoder s t a t e  a t  

t h e  node. 

on the  branches emanating from the node; t he  depth is  needed t o  com- 

pare these  code symbols with the  proper span of symbols i n  t h e  received 

sequence; and t h e  branch values a r i s i n g  from t h i s  comparison must be 

added t o  t h e  value of t h e  extended node t o  y i e ld  the  new node values.  

Therefore, f o r  every node t h e  decoder encounters, t he  value,  depth, 

The encoder s t a t e  i s  necessary t o  produce the  code symbols 

and encoder s t a t e  must be saved so t h a t  t he  node can be extended, i f  

necessary,  

For the  top node on the  s tack ( i . e , ,  one of the  nodes i n  t h e  

highest  non-empty b in)  these items a r e  kept i n  three  accumulators 

which a r e  given t h e  symbolic labe ls  VALUE, DEPTH, and STATE. For 

o ther  nodes on t h e  s tack,  t h e  information is contained i n  what we c a l l  

node descr ip t ions ,  which occupy s i x  contiguous words of computer memory ,  - 
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i n  which a re  s tored ,  respect ively,  t h e  node's value,  depth, encoder 

s t a t e ,  a s tack po in te r ,  a path poin te r ,  and a f l a g .  

items w i l l  be discussed l a t e r . )  

(The last three  

I n i t i a l l y  t h e  top node i s  the  o r ig in  node, which i s  a t  depth zero, 

and t h e  encoder s t a t e  is  zero. Thus DEPTH and STATE a re  i n i t i a l l y  set 

t o  zero. The value of the  o r ig in  node i s  usua l ly  considered t o  be 

zero, bu t  it is  convenient t o  avoid t h e  p o s s i b i l i t y  of encountering 

nodes of negative value.  We therefore  b i a s  t he  node values by 

i n i t i a l i z i n g  VALUE t o  a s u f f i c i e n t l y  la rge  number s o  t h a t ,  with over- 

whelming probabi l i ty ,  no node placed on the  stack has negative value.  

As the  search through t h e  t r e e  proceeds, t he  nodes encountered 

a re  added t o  the  s tack ,  and t h e  necessary information saved, e i t h e r  

as the  contents of t h e  three  designated accumulators or i n  s tored  

node descr ipt ions (or both) .  Once a node descr ip t ion  i s  s tored  it i s  

never phys ica l ly  de le ted  from memory, even i f  t h e  node reaches the  

top of t h e  s tack and is  extended. Therefore the re  are many node 

descr ip t ions  res ident  i n  memory represent ing nodes which a r e  no longer 

on the  s tack ,  by v i r t u e  of s t ep  (2) of the  algorithm. On t h e  o ther  

hand, every node on t h e  stack (except possibly t h e  top node) i s  

represented by a node descr ipt ion.  

res ident  node descr ip t ions  represent  nodes s t i l l  on the  s tack ,  and 

The determination of which of t h e  

the  ordering of  t he  stack contents i n t o  bins ,  a r e  the  functions of t h e  

s tack poin ters  and an a r ray  ca l l ed  t h e  b in  index. 

sists of two e n t r i e s  f o r  each b in :  t he  first i s  t h e  number of nodes 

i n  the  b in ;  t he  second i s  the  address of the  f irst  word of  t h e  node 

The b in  index con- -- 

descr ip t ion  corresponding t o  one of t he  nodes i n  t h e  b in .  The s tack 

poin ter  i n  t h i s  node descr ip t ion  contains the  address of the  first 
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word of the  node descr ip t ion  for another nQde i n  the  b in ,  and so on. 

(The s tack  poin ter  i n  the  descr ip t ion  of  t he  last node i n  the  b in  i s  

meaningless.) 

by using the  second en t ry  of t he  b i n  index corresponding t o  b i n  k and 

t h e  s tack  poin ters  i n  the  node descr ipt ions referenced. 

place an upper bound on the  number of b ins  and hence on the  s i z e  of 

Therefore, t h e  contents of b in  k can be found successively 

In order  t o  

the  b in  index ar ray ,  a lower bound must be set on the  b in  spacing H. 

We requi re  H t o  be a t  l e a s t  as grea t  as the  maximum pos i t i ve  branch 

value.  

To see haw decoding proceeds, l e t  us f i rs t  r e s t r i c t  ourselves t o  

the  BSC and t o  t h e  use of complementary codes, i . e . ,  codes i n  which 

the  code symbols on the  1 branch emanating from any node are comple- 

ments of the  symbols on the  0 branch: Then when the  top node i s  

extended and t h e  two branches compared t o  the  received sequence, only 

two outcomes a r e  possible:  e i t h e r  (1) one branch agrees with the  

received sequence i n  both d i g i t s  and the  o ther  disagrees i n  both,  o r  

(2) each branch disagrees  i n  exac t ly  one d i g i t .  We consider t he  two 

cases separa te ly .  

Case (1).  We call  t h i s  the  typ ica l  case s ince  almost a l l  

extensions of  nodes on the  cor rec t  path and roughly ha l f  t he  extensions 

of nodes not on t h e  cor rec t  path are of t h i s  kind. Table 2 shows t h a t  

the  branch value f o r  the  branch with two agreements w i l l  be +4 (or +8 

on the  t h i r d  BSC), s o  t h a t  t he  value of t he  corresponding node exceeds 

the  value of t he  extended node. Since the  extended node was i n  the  

highest  non-vacant b in ,  and i t s  successor along the +4 (4) branch 

belongs i n  the  same or a higher b in ,  we may take the  successor t o  be 

. - .  . .  
* An equivalent condition i s  t h a t  ne i the r  generator begin with a 

zero 
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t he  new top node and ad jus t  VALUE, DEPTH, and STATE accordingly; t he re  

i s  no need t o  s tore  i t s  descr ipt ion.  

we must s t o r e  a node descr ipt ion.  

descr ip t ion  can be gotten e a s i l y  from the  contents of VALUE, DEPTH, 

and STATE and the  branch value. 

t h a t  a node of value V belongs t o  b in  k i f  kH 2 V < (k+l)H. 

the  co r rec t  value of k i s  t h e  in t ege r  p a r t  of V/H. 

be a power of 2 ,  say H = 2', s o  t h a t  k can be found by a simple r - b i t  

s h i f t  operat ion,  

use the  b i n  index: increase t h e  b in  count by one, s e t  t he  s tack po in te r  

of the  new node descr ip t ion  t o  the  address present ly  spec i f ied  i n  t h e  

b in  index, and reset t h e  b in  index poin ter  t o  t h e  address of t h e  first 

word of t h e  new node descr ip t ion ,  Thus after in se r t ion ,  the  b i n  index 

poin ter  po in ts  t o  t h e  new descr ip t ion  and the  s tack  poin ter  of  t he  new 

descr ip t ion  poin ts  t o  t h e  descr ip t ion  which had been referenced by t h e  

h in  index poin ter .  

discuss  l a t e r ,  we a r e  ready t o  extend again using the  updated contents 

of  VALUE, DEPTH, and STATE. 

For the  o the r  successor, however, 

The first th ree  items i n  t h e  

To set  the  s tack poin ter ,  w e  note 

That i s ,  

We r e s t r i c t  H t o  

Having found the  b i n  t o  which t h e  node belongs, we 

After s e t t i n g  t h e  path po in te r  and f l ag ,  which we 

Case ( 2 ) .  Since both branch values a re  negative,  it is  l i k e l y  

t h a t  t he re  a re  nodes on the  stack i n  b ins  higher than t h e  bins  t o  which 

the  two successors belong. 

ava i lab le  as  it i s  i n  Case (1) -- w e  must search f o r  it. F i r s t  t he  

two new nodes a r e  s tored  i n  the  same way t h e  one was s tored  i n  Case (1). 

Then t h e  decoder scans down t h e  b in  index, s t a r t i n g  with t h e  b in  t o  

which t h e  extended node belonged, looking f o r  a b in  whose count is  non- 

zero, When the  first non-.empty bin i s  located, i t s  count i s  decreased 

by one, VALUE, DEPTH, and STATE a r e  loaded from t h e  node descr ip t ion  

Therefore t h e  new top node is  not r ead i ly  
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referenced by the  b in  index poin ter ,  and the b i n  index poin ter  i s  reset 

t o  t h e  address contained i n  t h e  s tack poin ter  o f  t h a t  node descr ip t ion .  

Thus t h e  node which had been the  second node i n  t h e  b in  is  now 

referenced by the  b in  index. The decoder is  now ready t o  extend 

again. 

We tu rn  now t o  the  Gaussian channel, leaving i n  force t h e  resn 

t r i c t i o n  t o  Complementary codes*. 

the  terms "agreement" and "disagreement," but  from Table 2 we see  t h a t  

I t  i s  no longer meaningful t o  use 

there  are s t i l l  two cases:  e i t h e r  (1) one branch value is  non- 

negative and the  o ther  i s  negative,  o r  (2) both a r e  negative.  

c l e a r  t h a t  the  same decoder ac t ions  described above are appl icable  

on t h e  Gaussian channel. 

I t  i s  

A t ransmit ted frame as  programmed cons is t s  of 256 branches 

corresponding t o  encoded information b i t s  followed by a 35-branch t a i l  

corresponding t o  an encoded memory span of Os, included t o  prevent 

high e r r o r  p robab i l i t y  i n  the  l a s t  few information b i t s .  The search 

i n  the  t a i l  d i f f e r s  from t h a t  i n  the  information p a r t  of the  tree i n  

t h a t  only the  successor along the  0 branch i s  considered. 

kinds of computations are s t i l l  performed: i f  t h e  branch value is non- 

negative there  i s  no s torage and the  successor i s  extended immediately; 

i f  the  branch value is  negative,  the  successor i s  s tored  and a search 

f o r  t he  new top node i s  undertaken. 

The two 

If t h e  contents of DEPTH i s  291, t h i s  ind ica tes  t h a t  t he  top node 

is  a t  t h e  end of t h e  tree and the  search i s  completed. This brings up 

the  problem of recovering the  information symbols on t h e  path chosen. 

If a descr ip t ion  had been s tored  f o r  every node examined, then the  

* This is  no s a c r i f i c e ,  s ince only complementary codes would be 
used i n  p rac t i ce .  
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path pointer in every node description could have been set to the 

address of the description of its predeCeS30r. 

would specify the path from the final node back to the origin. 

typically only one node is stored, this is impossible. 

every extension at least one node is stored, and therefore for every 

node encountered, either its predecessor or the complement of its 

predecessor (or both) is stored. Thus we set the path pointer in 

each node description to the address of the description of the pre- 

decessor if it is stored, or, if it is not, to the address of the 

description of the complement of the predebessor, and we use the sixth 

element of the node description, the flag, to indicate whether the 

node referenced by the path pointer is the predecessor or its com- 

plement. 

can step hack toward the origin using the path pointers, flags, and 

encoder states to produce the information sequence along the path 

selected. 

Then the path pointers 

Since 

However, at 

Now when the top node is at the end of the tree, the decoder 

Figure 49 illustrates the pattern of extensions and storage by the 

decoder program for a typical segment of a tree with branch values for 

the BSC, p = .033. The extensions are numbered sequentially. 
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-- A node which i s  extended 43c 
7 -  A node f o r  which a descr ip t ion  is  

s to red  

d--- -- A path po in te r  

-- An i nd ica to r  t h a t  t he  path po in te r  
references the  complement of  t h e  
predecessor 

FIGURE 49. A Typical Search by the  Je l inek  Decoder. 
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